Review. A global positioning system (GPS) satellite moves in a circular orbit with period 11h 58 min.(a) Determine the radius of its orbit.

Respuesta :

The global positioning system (GPS) satellite  that moves in a circular orbit with period of 11h 58 min has an orbital radius of: 26.55465166*10^6 m

To solve this problem the orbital radius formula and the procedure we will use is:

r =[tex]\sqrt[3][/tex][tex]\sqrt[3]{}[/tex][(G* m *T²)/(4 * π²)]

Where:

  • r = orbital radius
  • G = Gravitational constant
  • m = Mass of the Earth
  • T = Time period of the satellite
  • π = mathematical constant

Information about the problem:

  • T = 11h 58 min
  • G = 6.67 × 10⁻¹¹ m³/kgs²
  • m= 5.972 × 10²⁴ kg
  • π = 3.1416
  • r =?

By converting the time period of (h) and (min) from (s) we have:

T = (11h *3600 s/ 1 h) + (58 min * 60 s/1 min)

T = 39600 s +3480 s

T = 43080 s

Applying the orbital radius formula we get:

r =[tex]\sqrt[3][/tex][tex]\sqrt[3]{}[/tex][(G* m *T²)/(4 * π²)]

r =[tex]\sqrt[3][/tex][tex]\sqrt[3]{}[/tex][(6.67 × 10⁻¹¹ m³/kgs² * 5.972 × 10²⁴ kg *(43080 s)²)/(4 * (3.1416)²)]

r =[tex]\sqrt[3][/tex][tex]\sqrt[3]{}[/tex][1.8725*10^22 m³]

r= 26.55465166*10^6 m

What is the orbital radius?

It is the maximum of the radial distribution curve of the outermost orbital.

Learn more about orbital radius at: brainly.com/question/14437688

#SPJ4

Ver imagen id1001265