For the given sample, mean = 1.306 and standard deviation = 0.1826.
As given ,
Given sample
[tex]x_{i}[/tex]: 1.38, 1.18, 1.47, 1.35, 1.52, 1.23, 1.62, 1.17, 1.03, 1.11
Total samples N=10
Mean
 [tex]\bar{x} =\frac{\sum x_{i} }{N}[/tex]
  = ( 1.38+1.18+ 1.47+ 1.35+ 1.52+ 1.23+ 1.62+ 1.17+ 1.03+1.11)/ 10
  = (13.06 ) /10
  = 1.306
[tex](\sum x_{i} - \bar{x} ) ^{2} }[/tex] Â
= (1.38 -1.306)² + (1.18 -1.306)² +(1.47 -1.306)² +(1.35 -1.306)² +(1.52 -1.306)² +(1.23 -1.306)² +(1.62 -1.306)² +(1.17-1.306)² +(1.03 -1.306)² +(1.11 -1.306)²
=0.33344
Standard deviation =[tex]\sqrt{ \frac{(\sum x_{i} - \bar{x} ) ^{2} }{N} }[/tex]
               = [tex]\sqrt{\frac{0.33344}{10} }[/tex]
               = 0.1826
Therefore, for the given sample, mean = 1.306 and standard deviation = 0.1826.
Learn more about sample here
brainly.com/question/13287171
#SPJ4