Respuesta :
Answer:
50
Step-by-step explanation:
[tex]\frac{1.0 \times 10^{12}}{2.0 \times 10^{10}}=50[/tex]
Answer:
50
Step-by-step explanation:
Given:
- Volume of the Moon = 2.0 × 10¹⁰ km³
- Volume of the Earth = 1.0 × 10¹² km³
To find how many Moon volumes could fit inside of the volume of the Earth, divide the given volume of the Earth by the given volume of the Moon:
[tex]\sf \implies \dfrac{1.0 \times 10^{12}}{2.0 \times 10^{10}}[/tex]
Separate:
[tex]\sf \implies \dfrac{1.0}{2.0} \times \dfrac{10^{12}}{10^{10}}[/tex]
[tex]\textsf{Apply the Quotient Rule of exponents} \quad \dfrac{a^b}{a^c}=a^{b-c}:[/tex]
[tex]\sf \implies 0.5 \times 10^{12-10}[/tex]
[tex]\sf \implies 0.5 \times 10^{2}[/tex]
Simplify:
[tex]\implies \sf 0.5 \times 10 \times 10[/tex]
[tex]\implies \sf 5 \times 10[/tex]
[tex]\implies \sf 50[/tex]
Therefore, 50 Moon volumes could fit inside the volume of the Earth.
