I'm assuming the surfaces are the cylinder [tex]x^2+y^2=16[/tex] and the plane [tex]z=2x+3y[/tex].
Let [tex]x=4\cos(t)[/tex] and [tex]y=4\sin(t)[/tex]. Then
[tex]z=2x+3y=8\cos(t)+12\sin(t)[/tex]
We can simplify this using the identity
[tex]R \cos(\alpha + \beta) = R \cos(\alpha)\cos(\beta) - R \sin(\alpha) \sin(\beta)[/tex]
Let [tex]\alpha=t[/tex], then
[tex]R \cos(t + \beta) = R \cos(t)\cos(\beta) - R \sin(t) \sin(\beta) = 8\cos(t)+12\sin(t)[/tex]
[tex]\implies \begin{cases}R\cos(\beta) = 8 \\ R\sin(\beta) = -12\end{cases}[/tex]
We have
[tex]\left(R\cos(\beta)\right)^2 + \left(R\sin(\beta)\right)^2 = 8^2 + (-12)^2 \implies R^2 = 208 \implies R = 4\sqrt{13}[/tex]
and
[tex]\dfrac{R\sin(\beta)}{R\cos(\beta)} = -\dfrac{12}8 \implies \tan(\beta) = -\dfrac32 \implies \beta = -\arctan\left(\dfrac32\right)[/tex]
Then the vector function for the curve is
[tex]\vec r(t) = 4\cos(t)\,\vec\imath + 4\sin(t)\,\vec\jmath + 4\sqrt{13}\,\cos\left(t - \arctan\left(\dfrac32\right)\right)\,\vec k[/tex]
with [tex]0\le t\le2\pi[/tex].