Respuesta :

Answer:

shown in the picture

Step-by-step explanation:

shown in the picture

Ver imagen m4rcus06

Answer:

a)  9000 L

[tex]\textsf{b) (i)} \quad \textsf{Tap }P: \quad \dfrac{9000}{x}\:\sf minutes[/tex]

[tex]\textsf{b) (ii)} \quad \textsf{Tap }Q: \quad \dfrac{9000}{x+5}\:\sf minutes[/tex]

c)  Proof below.

[tex]\textsf{d)} \quad x=\dfrac{-5+5\sqrt{31} }{2}=11.41941...[/tex]

e)  5 hours 23 minutes

Step-by-step explanation:

Part (a)

The aquarium can be modeled as a rectangular prism.

Note: 1 m³ = 1000 L

[tex]\begin{aligned}\textsf{Volume of rectangular prism} & = \sf length \times width \times height\\\\\implies \textsf{Volume of aquarium} & = \sf 3\:m \times 2.5\:m \times 1.2\:m\\& = \sf 9 \:\:m^3\\& = \sf 9000\:L\end{aligned}[/tex]

Part (b)

[tex]\boxed{ \sf Time = \dfrac{Volume}{rate}}[/tex]

[tex]\textsf{(i)} \quad \textsf{Tap }P: \quad \dfrac{9000}{x}\:\sf minutes[/tex]

[tex]\textsf{(ii)} \quad \textsf{Tap }Q: \quad \dfrac{9000}{x+5}\:\sf minutes[/tex]

Part (c)

4 hours = 4 × 60 minutes = 240 minutes

If it takes 4 hours longer to fill the aquarium with water using tap P as compared to tap Q, then:

[tex]\begin{aligned}\textsf{Tap }P - 240 & = \textsf{Tap }Q\\\\\implies \dfrac{9000}{x} -240 & = \dfrac{9000}{x+5}\\\\\dfrac{9000 - 240x}{x} & = \dfrac{9000}{x+5}\\\\(9000-240x)(x+5) & =9000x\\\\9000x + 45000 -240x^2-1200x & = 9000x\\\\-240x^2-1200x+45000 & =0\\\\-120(2x^2+10x-375) & =0\\\\2x^2+10x-375 & =0\end{aligned}[/tex]

Part (d)

Quadratic Formula

[tex]x=\dfrac{-b \pm \sqrt{b^2-4ac} }{2a}\quad\textsf{when }\:ax^2+bx+c=0[/tex]

Therefore:

[tex]a=2, \quad b=10, \quad c=-375[/tex]

Substitute these values into the formula and solve for x:

[tex]\implies x=\dfrac{-10 \pm \sqrt{10^2-4(2)(-375)} }{2(2)}[/tex]

[tex]\implies x=\dfrac{-10 \pm \sqrt{100+3000} }{4}[/tex]

[tex]\implies x=\dfrac{-10 \pm \sqrt{3100} }{4}[/tex]

[tex]\implies x=\dfrac{-10 \pm \sqrt{100 \cdot 31} }{4}[/tex]

[tex]\implies x=\dfrac{-10 \pm \sqrt{100}\sqrt{31} }{4}[/tex]

[tex]\implies x=\dfrac{-10 \pm 10\sqrt{31} }{4}[/tex]

[tex]\implies x=\dfrac{-5\pm 5\sqrt{31} }{2}[/tex]

As the rate is positive only,

[tex]\implies x=\dfrac{-5+5\sqrt{31} }{2}=11.41941...\sf \:litres\:per\:minute[/tex]

Part (e)

If the rate that tap P fills the aquarium with water is x litres per min, and the rate the tap Q fills the aquarium with water is (x+5) litres per min, the rate that both taps fill the aquarium is:

[tex]\begin{aligned}\implies \sf Rate & = x+(x+5)\\& = 2x + 5\\& = 2\left(\dfrac{-5+5\sqrt{31} }{2}\right)+5\\& = -5+5\sqrt{31}+5\\& = 5\sqrt{31}\:\: \sf litres\:per\:min\end{aligned}[/tex]

Therefore,  if both taps are turned on together, the time it takes to fill the 9000L aquarium is:

[tex]\implies \sf Time & = \dfrac{9000}{5\sqrt{31} }\:\: \sf minutes \end{aligned}[/tex]

[tex]\implies \sf Time & =323.2895436... \:\: \sf minutes \end{aligned}[/tex]

[tex]\implies \sf Time & =5\:hours\:23.2895436... \:\: \sf minutes \end{aligned}[/tex]

[tex]\implies \sf Time = 5\: h\: 23\: min[/tex]

Note we really should round up to the nearest minute, even though 23.289... rounded is 23, as if we round down, the aquarium will not quite be filled with water.

RELAXING NOICE
Relax