Respuesta :
Answer:
Approximately [tex]25\; {\rm N}[/tex] (assuming that this spring is ideal.)
Explanation:
The displacement of a spring is the new length of the spring relative to the original length.
For example:
- When the [tex]6.0\; {\rm cm}[/tex]-spring in this question is stretched to [tex]10\; {\rm cm}[/tex], the displacement is [tex]x = (10\; {\rm cm} - 6.0\; {\rm cm})[/tex].
- Likewise, if this spring is stretched to [tex]20\; {\rm cm}[/tex], the displacement would be [tex](20\; {\rm cm} - 6\; {\rm cm})[/tex].
If this spring is ideal, the force on the spring would be proportional to the displacement of the spring. In other words, if a force of [tex]F_{\text{a}}[/tex] displaces this spring by [tex]x_{\text{a}}[/tex], while a force of [tex]F_{\text{b}}[/tex] displaces this spring by [tex]x_{\text{b}}[/tex], then:
[tex]\displaystyle \frac{F_{\text{a}}}{x_{\text{a}}} = \frac{F_{\text{b}}}{x_{\text{b}}}[/tex].
In this question, it is given that a force of [tex]F_{\text{a}} = 7.0 \; {\rm N}[/tex] would stretch this spring by [tex]x_{\text{a}} = (10\; {\rm cm} - 6.0\; {\rm cm})[/tex]. Thus, the force [tex]F_{\text{b}}[/tex] required to stretch this spring by [tex]x_{\text{a}} = (20\; {\rm cm} - 6.0\; {\rm cm})[/tex] would satisfy:
[tex]\displaystyle \frac{7.0\; {\rm N}}{10\; {\rm cm} - 6.0\; {\rm cm}}= \frac{F_{\text{b}}}{20\; {\rm cm} - 6.0\; {\rm cm}}[/tex].
Rearrange and solve for [tex]F_{\text{b}}[/tex]:
[tex]\begin{aligned} F_{\text{b}} &= \frac{7.0\; {\rm N}}{10\; {\rm cm} - 6.0\; {\rm cm}} \, (20\; {\rm cm} - 6.0\; {\rm cm}) \\ &\approx 25\; {\rm N}\end{aligned}[/tex].