Cosine Rule In ABC, BC = 4cm, M is the mid-point of BC, AM = 4cm and AMB = 120..... Check the image below

Answer:
[tex]\sf (a) \quad AC=2\sqrt{3}\:\:cm[/tex]
[tex]\sf (b) \quad AB=2\sqrt{7}\:\:cm[/tex]
[tex]\sf (c) \quad \angle ACB=90^{\circ}[/tex]
Step-by-step explanation:
Cosine rule
[tex]\sf c^2=a^2+b^2-2ab \cos C[/tex]
where:
Sketch the triangle using the given information (see attached).
Given:
Substitute the given values into the formula and solve for AC:
[tex]\implies \sf c^2=a^2+b^2-2ab \cos C[/tex]
[tex]\implies \sf AC^2=2^2+4^2-2(2)(4) \cos 60^{\circ}[/tex]
[tex]\implies \sf AC^2=4+16-16 \left(\dfrac{1}{2}\right)[/tex]
[tex]\implies \sf AC^2=20-8[/tex]
[tex]\implies \sf AC^2=12[/tex]
[tex]\implies \sf AC=\sqrt{12}[/tex]
[tex]\implies \sf AC=\sqrt{4 \cdot 3}[/tex]
[tex]\implies \sf AC=\sqrt{4}\sqrt{3}[/tex]
[tex]\implies \sf AC=2\sqrt{3}\:\:cm[/tex]
Given:
Substitute the given values into the formula and solve for AB:
[tex]\implies \sf c^2=a^2+b^2-2ab \cos C[/tex]
[tex]\implies \sf AB^2=2^2+4^2-2(2)(4) \cos 120^{\circ}[/tex]
[tex]\implies \sf AB^2=4+16-16 \left(-\dfrac{1}{2}\right)[/tex]
[tex]\implies \sf AB^2=20+8[/tex]
[tex]\implies \sf AB^2=28[/tex]
[tex]\implies \sf AB=\sqrt{28}[/tex]
[tex]\implies \sf AB=\sqrt{4\cdot7}[/tex]
[tex]\implies \sf AB=\sqrt{4}\sqrt{7}[/tex]
[tex]\implies \sf AB=2\sqrt{7}\:\:cm[/tex]
Given:
Substitute the given values into the formula and solve for ∠ACB:
[tex]\implies \sf c^2=a^2+b^2-2ab \cos C[/tex]
[tex]\implies \sf \left(2\sqrt{7}\right)^2=\left(2\sqrt{3}\right)^2+4^2-2\left(2\sqrt{3}\right)(4) \cos ACB[/tex]
[tex]\implies \sf 28=12+16-16\sqrt{3} \cos ACB[/tex]
[tex]\implies \sf 28=28-16\sqrt{3} \cos ACB[/tex]
[tex]\implies \sf 0=-16\sqrt{3} \cos ACB[/tex]
[tex]\implies \sf \cos ACB=0[/tex]
[tex]\implies \sf ACB=\cos^{-1}(0)[/tex]
[tex]\implies \sf ACB=90^{\circ}[/tex]