Respuesta :

Answer:

[tex]\sf (a) \quad AC=2\sqrt{3}\:\:cm[/tex]

[tex]\sf (b) \quad AB=2\sqrt{7}\:\:cm[/tex]

[tex]\sf (c) \quad \angle ACB=90^{\circ}[/tex]

Step-by-step explanation:

Cosine rule

[tex]\sf c^2=a^2+b^2-2ab \cos C[/tex]

where:

  • a, b and c are the sides of the triangle.
  • C is the angle opposite side c.

Sketch the triangle using the given information (see attached).

Part (a)

Given:

  • a = MC = 2
  • b = AM = 4
  • c = AC
  • C = ∠AMC = 60°

Substitute the given values into the formula and solve for AC:

[tex]\implies \sf c^2=a^2+b^2-2ab \cos C[/tex]

[tex]\implies \sf AC^2=2^2+4^2-2(2)(4) \cos 60^{\circ}[/tex]

[tex]\implies \sf AC^2=4+16-16 \left(\dfrac{1}{2}\right)[/tex]

[tex]\implies \sf AC^2=20-8[/tex]

[tex]\implies \sf AC^2=12[/tex]

[tex]\implies \sf AC=\sqrt{12}[/tex]

[tex]\implies \sf AC=\sqrt{4 \cdot 3}[/tex]

[tex]\implies \sf AC=\sqrt{4}\sqrt{3}[/tex]

[tex]\implies \sf AC=2\sqrt{3}\:\:cm[/tex]

Part (b)

Given:

  • a = BM = 2
  • b = AM = 4
  • c = AB
  • C = ∠AMB = 120°

Substitute the given values into the formula and solve for AB:

[tex]\implies \sf c^2=a^2+b^2-2ab \cos C[/tex]

[tex]\implies \sf AB^2=2^2+4^2-2(2)(4) \cos 120^{\circ}[/tex]

[tex]\implies \sf AB^2=4+16-16 \left(-\dfrac{1}{2}\right)[/tex]

[tex]\implies \sf AB^2=20+8[/tex]

[tex]\implies \sf AB^2=28[/tex]

[tex]\implies \sf AB=\sqrt{28}[/tex]

[tex]\implies \sf AB=\sqrt{4\cdot7}[/tex]

[tex]\implies \sf AB=\sqrt{4}\sqrt{7}[/tex]

[tex]\implies \sf AB=2\sqrt{7}\:\:cm[/tex]

Part (c)

Given:

  • a = AC = 2√3
  • b = BC = 4
  • c = AB = 2√7
  • C = ∠ACB

Substitute the given values into the formula and solve for ∠ACB:

[tex]\implies \sf c^2=a^2+b^2-2ab \cos C[/tex]

[tex]\implies \sf \left(2\sqrt{7}\right)^2=\left(2\sqrt{3}\right)^2+4^2-2\left(2\sqrt{3}\right)(4) \cos ACB[/tex]

[tex]\implies \sf 28=12+16-16\sqrt{3} \cos ACB[/tex]

[tex]\implies \sf 28=28-16\sqrt{3} \cos ACB[/tex]

[tex]\implies \sf 0=-16\sqrt{3} \cos ACB[/tex]

[tex]\implies \sf \cos ACB=0[/tex]

[tex]\implies \sf ACB=\cos^{-1}(0)[/tex]

[tex]\implies \sf ACB=90^{\circ}[/tex]

Ver imagen semsee45
ACCESS MORE