Respuesta :

[tex]\lim_{x\to\infty}\dfrac{\sqrt x}{\sqrt{x+\sqrt{x+\sqrt x}}}=\\ \lim_{x\to\infty}\dfrac{\dfrac{\sqrt x}{\sqrt x}}{\dfrac{\sqrt{x+\sqrt{x+\sqrt x}}}{\sqrt x}}=\\ \lim_{x\to\infty}\dfrac{1}{\sqrt{\dfrac{x+\sqrt{x+\sqrt x}}{x}}}=\\ \lim_{x\to\infty}\dfrac{1}{\sqrt{1+\dfrac{\sqrt{x+\sqrt x}}{x}}}=\\ \lim_{x\to\infty}\dfrac{1}{\sqrt{1+\dfrac{\sqrt{x+\sqrt x}}{\sqrt{x^2}}}}=\\[/tex]
[tex]\lim_{x\to\infty}\dfrac{1}{\sqrt{1+\sqrt{\dfrac{x+\sqrt x}{x^2}}}}=\\\lim_{x\to\infty}\dfrac{1}{\sqrt{1+\sqrt{\dfrac{1}{x}+\dfrac{\sqrt x}{\sqrt{x^4}}}}}=\\\lim_{x\to\infty}\dfrac{1}{\sqrt{1+\sqrt{\dfrac{1}{x}+\sqrt{\dfrac{x}{x^4}}}}}=\\ \lim_{x\to\infty}\dfrac{1}{\sqrt{1+\sqrt{\dfrac{1}{x}+\sqrt{\dfrac{1}{x^3}}}}}=\\ =\dfrac{1}{\sqrt{1+\sqrt{0+\sqrt{0}}}}=\\[/tex]
[tex]=\dfrac{1}{\sqrt{1+0}}=\\ =\dfrac{1}{\sqrt{1}}=\\ =\dfrac{1}{1}=\\ 1 [/tex]