Consider this equation. cos(θ)= -3/10 If θis an angle in quadrant II, what is the value of tan (θ)?
PLEASE HELP DUE IN 2 HOURS

Answer:
C)
Step-by-step explanation:
Trigonometry ratio:
[tex]\sf Cos \ \theta = \dfrac{Adjacent \ side}{hypotenuse}=\dfrac{-3}{10}[/tex]
We need to find the opposite side using Pythagorean theorem.
opposite side² = hypotenuse² - adjacent side²
= 10² - (-3)²
= 100 - 9
= 91
opposite side = √91
[tex]\sf tan \ \theta = \dfrac{opposite \ side}{adjacent \ side}[/tex]
[tex]\sf = \dfrac{\sqrt{91}}{3}[/tex]
In quadrant II, value of tan [tex]\theta[/tex] is negative.
[tex]\sf tan \ \theta = -\dfrac{\sqrt{91}}{3}[/tex]