Answer:
Step-by-step explanation:
[tex]\sf n^{th}[/tex] roots of a complex number is given by DeMoivre's formula.
[tex]\sf \boxed{\bf r^{\frac{1}{n}}\left[Cos \dfrac{\theta + 2\pi k}{n}+i \ Sin \ \dfrac{\theta+2\pi k}{n}\right]}[/tex]
Here, k lies between 0 and (n -1) ; n is the exponent.
[tex]\sf -1 + i\sqrt{3}[/tex]
a = -1 and b = √3
[tex]\sf \boxed{r=\sqrt{a^2+b^2}} \ and \ \boxed{\theta = Tan^{-1} \ \dfrac{b}{a}}[/tex]
[tex]\sf r = \sqrt{(-1)^2 + 3^2}\\\\ = \sqrt{1+9}\\\\=\sqrt{10}[/tex]
[tex]\sf \theta = tan^{-1} \ \dfrac{\sqrt{3}}{-1}\\\\ = tan^{-1} \ (-\sqrt{3})[/tex]
[tex]\sf = \dfrac{-\pi }{3}[/tex]
n = 4
For k = 0,
[tex]\sf z = \sqrt[4]{10}\left[Cos \ \dfrac{\dfrac{-\pi}{3} +0}{4}+iSin \ \dfrac{\dfrac{-\pi}{3}+0}{4}\right] \\\\\\z= \sqrt[4]{10} \left[Cos \ \dfrac{ -\pi }{12}+iSin \ \dfrac{-\pi}{12}\right]\\\\\\z = \sqrt[4]{10}\left[-Cos \ \dfrac{\pi}{12}-i \ Sin \ \dfrac{\pi}{12}\right][/tex]
For k =1,
[tex]\sf z = \sqrt[4]{10}\left[Cos \ \dfrac{5\pi}{12}+i \ Sin \ \dfrac{5\pi}{12}\right][/tex]
For k =2,
[tex]z = \sqrt[4]{10}\left[Cos \ \dfrac{11\pi}{12}+i \ Sin \ \dfrac{11\pi}{12}\right][/tex]
For k = 3,
[tex]\sf z = \sqrt[4]{10}\left[Cos \ \dfrac{17\pi}{12}+i \ Sin \ \dfrac{17\pi}{12}\right][/tex]
For k = 4,
[tex]\sf z =\sqrt[4]{10}\left[Cos \ \dfrac{23\pi}{12}+i \ Sin \ \dfrac{23\pi}{12}\right][/tex]