The answer is 30.25MeV.
The radius of alpha particle is,
[tex]$\begin{aligned}\mathrm{r}_{a} &=r_{0} A^{1 / 3} \\&=\left(1.2 \times 10^{-15} \mathrm{~m}\right)(4)^{1 / 3} \\&=1.9 \times 10^{-15} \mathrm{~m}\end{aligned}$[/tex]
Radius of [tex]${ }_{100}^{257} \mathrm{Fm}$[/tex] is
[tex]$\begin{aligned}r_{F m} &=\left(1.2 \times 10^{-15} \mathrm{~m}\right)(257)^{1 / 3} \\&=7.62 \times 10^{-15} \mathrm{~m}\end{aligned}$[/tex]
When the alpha particle is at the surface of mucleus, the seperation between alpha particle and nucleus is
[tex]$\begin{aligned}r &=r_{a}+r_{F m} \\&=1.9 \times 10^{-15} \mathrm{~m}+7.62 \times 10^{-15} \mathrm{~m} \\&=9.52 \times 10^{-15} \mathrm{~m}\end{aligned}$[/tex]
potential energy is,
[tex]$\begin{aligned}U &=\frac{k(100 e)(2 e)}{r} \\&=\frac{\left(9 \times 10^{9}\right)(200)\left(1.6 \times 10^{-19} \mathrm{C}\right)^{2}}{9.52 \times 10^{-15} \mathrm{~m}}\end{aligned}$[/tex]
[tex]\begin{aligned}&=\left(4.84 \times 10^{-12} \mathrm{~J}\right)\left(\frac{1 \mathrm{MeV}}{1.6 \times 10^{-13} \mathrm{~J}}\right) \\&=30.25 \mathrm{MeV}\end{aligned}[/tex]
What is law of conservation of energy?
To learn more about conservation of energy visit:
https://brainly.com/question/2137260
#SPJ4