Respuesta :
[tex]\boldsymbol{\sf{6-\dfrac{3}{4}x+\dfrac{1}{3}=\dfrac{1}{y}x+5 }}[/tex]
Convert 6 to the fraction 18/3.
[tex]\boldsymbol{\sf{\dfrac{18}{3} -\dfrac{3}{4}x+\dfrac{1}{3}=\dfrac{1}{y}x+5 }}[/tex]
Since the fractions 18/3 and 1/3 have the same denominator, we add their numerators to calculate them.
[tex]\boldsymbol{\sf{\dfrac{18+1}{3}-\dfrac{3}{4}x=\dfrac{1}{2}x+5 \ \longmapsto \ \ [Add \ 18+1] }}[/tex]
[tex]\boldsymbol{\sf{\dfrac{19}{3}-\dfrac{3}{4}x=\dfrac{1}{2}x+5 }}[/tex]
Subtract [tex]\bf{\frac{1}{2}x }[/tex] on both sides.
[tex]\boldsymbol{\sf{\dfrac{19}{3}-\dfrac{3}{4}x-\dfrac{1}{2}x=5 }}[/tex]
Combine [tex]\bf{-\frac{3}{4}x}[/tex] and [tex]\bf{-\frac{1}{2}x}[/tex] to get [tex]\bf{-\frac{5}{4}x}[/tex].
[tex]\boldsymbol{\sf{\dfrac{19}{3}-\dfrac{5}{4}x=5 }}[/tex]
Subtract 19x from both sides.
[tex]\boldsymbol{\sf{-\dfrac{5}{4}x=5-\dfrac{19}{3} }}[/tex]
Convert 5 to the fraction 15/3.
[tex]\boldsymbol{\sf{-\dfrac{4}{5}x=\dfrac{15}{3}-\dfrac{19}{3} }}[/tex]
Since the fractions 15/3 and 19/3 have the same denominator, we add their numerators to calculate them.
[tex]\boldsymbol{\sf{-\dfrac{5}{4}x=\dfrac{15-19}{3} \ \longmapsto \ \ [Subtract \ 15-19] }}[/tex]
[tex]\boldsymbol{\sf{-\dfrac{5}{4}x=-\dfrac{4}{3} }}[/tex]
Multiply both sides by -4/3, the reciprocal of -4/3.
[tex]\boldsymbol{\sf{x=-\dfrac{4}{5}\left(-\dfrac{4}{5}\right) }}[/tex]
Multiply -4/3 by -4/5 (to do this, multiply the numerator by the numerator and the denominator by the denominator).
[tex]\boldsymbol{\sf{x=\dfrac{-4(-4)}{3\times5} \ \ \longmapsto \ \ Multiply, \ numerator \ and \ denominator. }}[/tex]
[tex]\red{\boxed{\boldsymbol{\sf{\blue{Answer \ \ \longmapsto \ \ \ \ x=\frac{16}{15} }}}}}[/tex]