For a certain company, the cost function for producing x items is C(x)=50x+250 and the revenue function for selling x items is R(x)=−0.5(x−110)2+6,050 . The maximum capacity of the company is 150 items.

Respuesta :

The company sells all that it produces, the profit function is:-0.5x2+60x-250.

Profit function

P(x)= R(x)-C(x)      

=-0.5(x-110)2 +6050-(50x+250)

Let Distribute Negative Sign      

P(x)= -0.5(x-110)2 + 6050 +-1(50x+250)

P(x)= -0.5(x-110)2 + 6050 +-1(50x) + (-1) (250)

P(x)= -0.5(X-110)2 +6050 +-50x + -250

Distribute P(x)= -0.5x2+110x+-6050+6050+-50x+-250

Combine Like Terms

P(x)= -0.5x2 +110x+-6050+6050+-50x+-250

P(x)=(-0.5x2) + (110x+-50x) + (-6050+6050+-250)  

P(x)= -0.5x2+60x-250

Therefore the company sells all that it produces, the profit function is:-0.5x2+60x-250.

The missing requirement is:

Assuming that the company sells all that it produces, what is the profit function?

Learn more about profit function here:https://brainly.com/question/4618859

#SPJ1