Respuesta :
Answer:
○ [tex]3x + 4y = 7[/tex]
Step-by-step explanation:
The general form of the equation of a straight line is as follows:
[tex]\boxed{y = mx + c}[/tex],
where:
m = slope
c = y-intercept.
This means that m, which is the coefficient of [tex]x[/tex], needs to be [tex]-\frac{3}{4}[/tex].
Therefore we have to rearrange each equation given to make y the subject, and then check if the coefficient of [tex]x[/tex] becomes [tex]-\frac{3}{4}[/tex].
• First option:
[tex]4x - 3y = 7[/tex]
⇒ [tex]-3y = -4x + 7[/tex]
⇒ [tex]y = \frac{4}{3}x -{ \frac{7}{3}[/tex]
∴ 'm' is [tex]\bf \frac{4}{3}[/tex], not [tex]-\frac{3}{4}[/tex], therefore this option is incorrect.
• Second option:
[tex]4x + 3y = 7[/tex]
⇒ [tex]3y = -4x + 7[/tex]
⇒ [tex]y = -\frac{4}{3}x + \frac{7}{3}[/tex]
∴ 'm' is [tex]\bf -\frac{4}{3}[/tex], not [tex]-\frac{3}{4}[/tex], therefore this option is incorrect.
• Third option:
[tex]3x + 4y = 7[/tex]
⇒ [tex]4y = -3x + 7[/tex]
⇒ [tex]y = -\frac{3}{4}x + \frac{7}{3}[/tex]
'm' is [tex]\bf -\frac{3}{4}[/tex], therefore this option is correct.
Note:
You can rearrange the equation given in the last option, and see that 'm' comes out to be [tex]\frac{3}{4}[/tex], thereby making it incorrect.
[tex]\huge\underline{\underline{\boxed{\mathbb {SOLUTION:}}}}[/tex]
Given:
[tex]\sf{- \dfrac{3}{4}}[/tex]
First, we take all the given options to their slope-intercept form:
[tex]\longrightarrow \sf{y=m x+b}[/tex]
Taking to each equation to its slope-intercept form, you get:
[tex]\small\longrightarrow \sf{-3y = 7 - 4x}[/tex]
[tex]\small\longrightarrow \sf{- \dfrac{4}{ - 3} x + \dfrac{7}{3} }[/tex]
[tex]\small\longrightarrow \sf{y = \dfrac{4}{ 3} x - \dfrac{7}{3} }[/tex]
[tex]\small\longrightarrow \sf{3y = 7 - 4x}[/tex]
[tex]\small\longrightarrow \sf{y = \dfrac{7}{3} - \dfrac{4}{3} x}[/tex]
[tex]\small\longrightarrow \sf{4y y = = 7- 3x}[/tex]
[tex]\small\longrightarrow \sf{y = \dfrac{7}{4} - \dfrac{3}{4} x}[/tex]
[tex]\huge\underline{\underline{\boxed{\mathbb {ANSWER:}}}}[/tex]
◉ [tex] \bm{3x+4y=7}[/tex]