Respuesta :
The profit function is R(x) = -0.5 (x - 50²) + 1150
- The domain of P(x) is: 0 ≤ x ≤ 150
- Profit when producing 50 items = 1150
- Profit when producing 60 items = 1100
What is the profit function about?
Note that:
1. Profit = Revenue - cost
P (x) = 0.5 ( x - 90²) + 4050 - 40x - 100
= 0.5 ( x² - 180 + 8100 + 4050 - 40x - 100
=0.5 x² - 50x - 100
=0.5( x² - 100x) - 100
= -0.5 (x - 50²) + 1150
2. Since the minimum unit is 50.
Then x ≤ 150
X = describe the item so it need to be a negative number
- x ≥ 0
Hence the domain of P(x) is: 0 ≤ x ≤ 150
3. Assume x = 50 , 60
R(50) = 1150 , R (60 ) = -0.5 (60-50)² + 1150 = 1100
4. R (x) = -0.5 (x-50)² + 1150 then 50 more unit is removed hence, Profit when producing 60 items = 1100
Therefore, The profit function is R(x) = -0.5 (x - 50²) + 1150
- The domain of P(x) is: 0 ≤ x ≤ 150
- Profit when producing 50 items = 1150
- Profit when producing 60 items = 1100
Learn more about profit function from
https://brainly.com/question/16866047
#SPJ1