Split up [0, 16] into 4 equally-spaced subintervals of length [tex]\frac{16-0}4=4[/tex],
[0, 16] = [0, 4] U [4, 8] U [8, 12] U [12, 16]
with midpoints 2, 6, 10, and 14, respectively.
Then with the midpoint rule, we approximate the integral to be about
[tex]\displaystyle \int_0^{16} \sin(\sqrt x) \, dx \approx 4 \left(\sin(\sqrt2) + \sin(\sqrt6) + \sin(\sqrt{10}) + \sin(\sqrt{14})\right) \approx \boxed{4.1622}[/tex]