Respuesta :

Answer:

[tex]\dfrac{8y-43}{(y-1)(y-8)}[/tex]

Explanation:

[tex]\rightarrow \dfrac{5}{y-1} +\dfrac{3}{y-8}[/tex]

make the denominators similar

[tex]\rightarrow \dfrac{5(y-8)}{(y-1)(y-8)} +\dfrac{3(y-1)}{(y-8)(y-1)}[/tex]

Join both the fraction

[tex]\rightarrow \dfrac{5(y-8)+3(y-1)}{(y-1)(y-8)}[/tex]

simplify the expression

[tex]\rightarrow \dfrac{5y-40+3y-3}{(y-1)(y-8)}[/tex]

[tex]\rightarrow \dfrac{8y-43}{(y-1)(y-8)}[/tex]

[tex]{ \qquad\qquad\huge\underline{{\sf Answer}}} [/tex]

Let's simplify ~

[tex]\qquad \sf  \dashrightarrow \: \cfrac{5}{y - 1} + \cfrac{3}{y - 8} [/tex]

[tex]\qquad \sf  \dashrightarrow \: \cfrac{5(y - 8) + 3(y - 1)}{(y - 1)(y - 8)} [/tex]

[tex]\qquad \sf  \dashrightarrow \: \cfrac{5y -40 + 3y - 3}{y {}^{2} - y - 8y + 8} [/tex]

[tex]\qquad \sf  \dashrightarrow \: \cfrac{8y -43}{y {}^{2} - 9y + 8} [/tex]