Respuesta :

Answer:

11. 333... which can also be written as 11 1/3.

Step-by-step explanation:

Sure.

√(6c - 4) = 8

Squaring both sides:

6c - 4 = 64

6c = 64 + 4 = 68

c = 68/6

  = 11. 333...

Answer:

[tex]c=\dfrac{34}{3}[/tex]

Step-by-step explanation:

Given equation:

[tex]\sqrt{6c-4}=8[/tex]

Square both sides:

[tex]\implies (\sqrt{6c-4})^2=8^2[/tex]

[tex]\implies 6c-4=64[/tex]

Add 4 to both sides:

[tex]\implies 6c-4+4=64+4[/tex]

[tex]\implies 6c=68[/tex]

Divide both sides by 6:

[tex]\implies \dfrac{6c}{6}=\dfrac{68}{6}[/tex]

[tex]\implies c=\dfrac{34}{3}[/tex]

Verify the solution by inputting the found value of c back into the equation:

[tex]\implies \sqrt{6\left(\dfrac{34}{3}\right)-4}[/tex]

[tex]\implies \sqrt{\dfrac{204}{3}-4}[/tex]

[tex]\implies \sqrt{68-4}[/tex]

[tex]\implies \sqrt{64}[/tex]

[tex]\implies \pm 8[/tex]

Therefore, the solution of the found value of c is verified.