Respuesta :
Answer:
11. 333... which can also be written as 11 1/3.
Step-by-step explanation:
Sure.
√(6c - 4) = 8
Squaring both sides:
6c - 4 = 64
6c = 64 + 4 = 68
c = 68/6
= 11. 333...
Answer:
[tex]c=\dfrac{34}{3}[/tex]
Step-by-step explanation:
Given equation:
[tex]\sqrt{6c-4}=8[/tex]
Square both sides:
[tex]\implies (\sqrt{6c-4})^2=8^2[/tex]
[tex]\implies 6c-4=64[/tex]
Add 4 to both sides:
[tex]\implies 6c-4+4=64+4[/tex]
[tex]\implies 6c=68[/tex]
Divide both sides by 6:
[tex]\implies \dfrac{6c}{6}=\dfrac{68}{6}[/tex]
[tex]\implies c=\dfrac{34}{3}[/tex]
Verify the solution by inputting the found value of c back into the equation:
[tex]\implies \sqrt{6\left(\dfrac{34}{3}\right)-4}[/tex]
[tex]\implies \sqrt{\dfrac{204}{3}-4}[/tex]
[tex]\implies \sqrt{68-4}[/tex]
[tex]\implies \sqrt{64}[/tex]
[tex]\implies \pm 8[/tex]
Therefore, the solution of the found value of c is verified.