Respuesta :

Answer:

Y = 2+- square root of 6

Step-by-step explanation:

[tex]{ \qquad\qquad\huge\underline{{\sf Answer}}} [/tex]

Lets solve ~

Let's calculate its discriminant ~

[tex]\qquad \sf  \dashrightarrow \: {y}^{2} -4y - 2=0[/tex]

  • a = 1

  • b = -4

  • c = -2

[tex]\qquad \sf  \dashrightarrow \: discriminant = {b}^{2} - 4ac[/tex]

[tex]\qquad \sf  \dashrightarrow \: d = (-4) {}^{2} - (4 \times 1\times - 2)[/tex]

[tex]\qquad \sf  \dashrightarrow \: d = 16 - ( - 8)[/tex]

[tex]\qquad \sf  \dashrightarrow \: d = 24[/tex]

[tex]\qquad \sf  \dashrightarrow \: \sqrt {d }= 2 \sqrt{6} [/tex]

So, by quadratic formula :

[tex]\qquad \sf  \dashrightarrow \: y= \dfrac{ - {b}^{} \pm \sqrt{d} }{2a} [/tex]

[tex]\qquad \sf  \dashrightarrow \: y = \dfrac{ - {(-4)}^{} \pm 2\sqrt{6} }{2 ×1} [/tex]

[tex]\qquad \sf  \dashrightarrow \: \:y=\pm \cfrac{2(2\pm\sqrt{6} }{2} [/tex]

[tex]\qquad \sf  \dashrightarrow \: \:y= { 2+\sqrt{6}}{} \: \: and \: \: t = {2-\sqrt{6}}{} [/tex]