Respuesta :

[tex]\frac{-2x^{2} +25 }{(x-2) (x-5)} ,x\neq 2,x\neq 5[/tex]  is the difference.

What is an expression?

⇒ An expression is a combination of numbers, variables, and functions (such as addition, subtraction, multiplication or division, etc.)

Calculation :

⇒   [tex]\frac{3x^{2} }{(x^{2} -7x+10)}- \frac{5x} {x-2}[/tex]

⇒   [tex]\frac{3x^{2} }{(x-2)(x-5)}- \frac{5x} {x-2}[/tex]

⇒1/(x-2) [(3x²-5x{x-5})/(x-5)]

⇒1/(x-2) [(3x²-5x²+25x)/(x-5)]

⇒1/(x-2) [ (-2x²+25x)/(x-5)]

⇒[tex]\frac{-2x^{2} +25x }{(x-2)(x-5)}[/tex]

at x=2 and x=5 the denominator becomes zero If the denominator of a fraction is zero, the expression is not a legal fraction because its overall value is undefined.

⇒   [tex]\frac{-2x^{2} +25 }{(x-2) (x-5)} ,x\neq 2,x\neq 5[/tex] is the difference

learn more about similar expressions here :

https://brainly.com/question/16850029

#SPJ1