Suppose each edge of the cube shown in the figure is 10 inches long. Find the sine and cosine of the angle formed by diagonals DE and DG.

Suppose each edge of the cube shown in the figure is 10 inches long Find the sine and cosine of the angle formed by diagonals DE and DG class=

Respuesta :

Check the picture below.

[tex]sin(EDG )=\cfrac{\stackrel{opposite}{10}}{\underset{hypotenuse}{10\sqrt{3}}}\implies sin(EDG )=\cfrac{1}{\sqrt{3}}\implies sin(EDG )=\cfrac{1}{\sqrt{3}}\cdot \cfrac{\sqrt{3}}{\sqrt{3}} \\\\\\ \stackrel{\textit{rationalizing the denominator}}{sin(EDG )=\cfrac{\sqrt{3}}{\sqrt{3^2}}\implies sin(EDG )=\cfrac{\sqrt{3}}{3}} \\\\[-0.35em] ~\dotfill[/tex]

[tex]cos(EDG )=\cfrac{\stackrel{adjacent}{10\sqrt{2}}}{\underset{hypotenuse}{10\sqrt{3}}}\implies cos(EDG )=\cfrac{\sqrt{2}}{\sqrt{3}}\implies cos(EDG )=\cfrac{\sqrt{2}}{\sqrt{3}}\cdot \cfrac{\sqrt{3}}{\sqrt{3}} \\\\\\ \stackrel{\textit{rationalizing the denominator}}{cos(EDG )=\cfrac{\sqrt{6}}{\sqrt{3^2}}\implies cos(EDG )=\cfrac{\sqrt{6}}{3}}[/tex]

Ver imagen jdoe0001