Respuesta :

The solution for the initial value problem is [tex]y_{g} = e^{-2x} (-12cos(x) + 5sin(x)) + 7e^{-4x}[/tex]

Given,

y" + 4y' + 5y = 35[tex]e^{-4x}[/tex]

y(0) = -5

y'(0) = 1

Solve this homogenous equation to get [tex]y_{h}[/tex]

According to differential operator theorem,

[tex]y_{h}[/tex] = [tex]e^{ax}[/tex]( A cos (bx) + B sin (bx)), where A and B are constants.

Therefore,

y" + 4y' + 5y = 0

([tex]D^{2}[/tex] + 4D + 5)y = 0

D = -2± i    

[tex]y_{h} = e^{-2x} ( A cos (x) + B sin (x))[/tex]

Now, solve for [tex]y_{p}[/tex]

A function of the kind [tex]ce^{-4x}[/tex] is the function on the right, we are trying a solution of the form [tex]y_{p} =ce^{-4x}[/tex], here c is a constant.

[tex]y_{p} " + 4y_{p} ' + 5y_{p} = 35e^{-4x} \\=16ce^{-4x} -16ce^{-4x} +5ce^{-4x} = 35e^{-4x} \\= 5ce^{-4x} =35e^{-4x} \\c=\frac{35}{5} =7\\y_{p} =7e^{-4x}[/tex]

Then the general solution will be like:

[tex]y_{g} =y_{h} +y_{p} \\[/tex]

    = [tex]e^{-2x} (Acos(x)+Bsin(x))+7e^{-4x}[/tex]

[tex]y_{g}(0)=-5=A+7=-12\\y_{g} '(0)=e^{-2x} (-Asin(x)+Bcos(x))-2e^{-2x} (Acos(x)+Bsin(x))-28e^{-4x} \\y'_{g} (0)=1=B-2A-28\\[/tex]

       B = 1 - 24 + 28 = 5

Then the solution for the given initial value problem is

[tex]y_{g} =e^{-2x} (-12cos(x)+5sin(x))+7e^{-4x}[/tex]

Learn more about initial value problem here: https://brainly.com/question/8599681

#SPJ4