Consider the sets below. u = {x | x is a real number} a = {x | x is an odd integer} r = {x | x = 3, 7, 11, 27} is r ⊂ a?

Respuesta :

The correct option is (B) yes because all the elements of set R are in set A.

What is an element?

  • In mathematics, an element (or member) of a set is any of the distinct things that belong to that set.

Given sets:

  1. U = {x | x is a real number}
  2. A = {x | x is an odd integer}
  3. R = {x | x = 3, 7, 11, 27}

So,

  • A = 1, 3, 5, 7, 9, 11... are the elements of set A.
  • R ⊂ A can be understood as R being a subset of A, i.e. all of R's elements can be found in A.
  • Because all of the elements of R are odd integers and can be found in A, R ⊂ A is TRUE.

Therefore, the correct option is (B) yes because all the elements of set R are in set A.

Know more about sets here:

https://brainly.com/question/2166579

#SPJ4

The complete question is given below:
Consider the sets below. U = {x | x is a real number} A = {x | x is an odd integer} R = {x | x = 3, 7, 11, 27} Is R ⊂ A?

(A) yes, because all the elements of set A are in set R

(B) yes, because all the elements of set R are in set A

(C) no because each element in set A is not represented in set R

(D) no, because each element in set R is not represented in set A