Respuesta :
At equilibrium the concentrations of:
[HSO₄⁻] = 0.10 M;
[SO₄²⁻] = 0.037 M;
[H⁺] = 0.037 M;
There is initially very little H+ and no SO₄²⁻ in the solution. A salt is KHSO₄⁻. All KHSO₄⁻ will split apart into K⁺ and HSO₄⁻ ions. [HSO₄⁻] will initially be present at a concentration of 0.14 M.
HSO₄⁻ will not gain H⁺ to produce H₂SO₄ since H₂SO₄ is a strong acid. HSO₄⁻ may act as an acid and lose H⁺ to form SO₄²⁻. Let the final H⁺ concentration be x M. Construct a RICE table for the dissociation of HSO₄²⁻.
R [tex]HSO_4^-[/tex] ⇄ [tex]H^+ + SO_4^2^-[/tex]
I [tex]0.14[/tex]
C [tex]- x[/tex] [tex]+x[/tex] [tex]+x[/tex]
E [tex]0.14-x[/tex] [tex]x[/tex] [tex]x[/tex]
[tex]K_a = 1.3[/tex] × [tex]10^-^2[/tex] for [tex]HSO^-_4[/tex] . As a result,
[tex]\frac{[H^+]. [SO_4^2^-]}{HSO_4^-} = K_a[/tex]
[tex]K_a[/tex] is large. It is no longer valid to approximate that [tex][HSO^-_4][/tex] at equilibrium is the same as its initial value.
[tex]\frac{x^2}{0.14-y} = 1.3 * 10^-^2[/tex]
[tex]x^2+1.3*10^-^2x - 0.14[/tex] × [tex]1.3[/tex] × [tex]10^-^2= 0[/tex]
Solving the quadratic equation for [tex]x , x \geq 0[/tex] since [tex]x[/tex] represents a concentration;
[tex]x=0.0366538[/tex]
Then, round the results to 2 significant figure;
- [tex][SO_4^2^-] = x = 0.037 mol. L ^-^1[/tex]
- [tex][H^+] = x = 0.037 mol. L ^-^1[/tex]
- [tex][HSO_4^-] = 0.14 - x = 0.10 mol. L ^-^1[/tex]
Learn more about concentration here:
https://brainly.com/question/14469428
#SPJ4