Respuesta :

Both the turbines take same amount of time to rotate through 1. 0 radian of angular displacement.

Given,

[tex]R_{A}[/tex] = [tex]2R_{B}[/tex]

[tex]V_{A}[/tex] = [tex]2V_{B}[/tex]

As, angular velocity is, ω

So, ω[tex]_{A}[/tex] = [tex]V_{A}[/tex] / [tex]R_{A}[/tex]

     ω[tex]_{A}[/tex] = 2[tex]V_{B}[/tex] / 2[tex]R_{B}[/tex]

      ω[tex]_{A}[/tex] = [tex]V_{B}[/tex] / [tex]R_{B}[/tex]

also, ω[tex]_{B}[/tex] = [tex]V_{B}[/tex] / [tex]R_{B}[/tex]

And angular displacement is , θ

θ = ω / t

t = θ / ω

[tex]t_{A} = t_{B}[/tex] = [tex]R_{B}[/tex] / [tex]V_{B}[/tex]

Therefore, Both the turbines take same amount of time to rotate through 1. 0 radian of angular displacement.

Learn more about angular displacement here;

https://brainly.com/question/13649539

#SPJ4