The frequency of the oscillation is (f)= 284.21Hz
To calculate the frequency we used the formula,
[tex]f=\frac{\omega}{2\pi }[/tex]
Here , we are given,
I= The peak current across an ac generator = 0.50 A.
V= The peak Voltage across an ac generator = 8.0 V.
C= The capacitance of the capacitor = 35 μf.
We have to find the angular frequency of an ac generator [tex]\omega[/tex].
We know, The maximum charge of the generator is,
[tex]Q=CV[/tex]
Or,[tex]Q=(35\times 10^{-6}) \times 8.0[/tex]
Or, [tex]Q=28\times 10^{-5} C[/tex]
So, The maximum charge of the generator is (Q)= [tex]28\times 10^{-5} C[/tex]
Now, for the angular frequency we can write that,
[tex]I=\omega\times Q[/tex]
Or,[tex]\omega=\frac{I}{Q}[/tex]
Now we put the value of [tex]\omega[/tex] in the first equation , we can find that
[tex]f=\frac{\omega}{2\pi }[/tex]
Or,[tex]f=\frac{1}{2\pi } \times \frac{I}{Q}[/tex] [Note: from above[tex]\omega=\frac{I}{Q}[/tex]]
Or,[tex]f=\frac{1}{2\pi } \times \frac{0.50}{28\times 10^{-5} }[/tex]
Or, [tex]f=284.21 Hz[/tex]
Therefore, from the above calculation we can conclude that the frequency of the oscillation is 284.21 Hz.
Learn more about Oscillation:
https://brainly.com/question/17618978
#SPJ4