Respuesta :

Answer:

First we write y and its derivatives as power series:

y=∑n=0∞anxn⟹y′=∑n=1∞nanxn−1⟹y′′=∑n=2∞n(n−1)anxn−2

Next, plug into differential equation:

(x+2)y′′+xy′−y=0

(x+2)∑n=2∞n(n−1)anxn−2+x∑n=1∞nanxn−1−∑n=0∞anxn=0

x∑n=2∞n(n−1)anxn−2+2∑n=2∞n(n−1)anxn−2+x∑n=1∞nanxn−1−∑n=0∞anxn=0

Move constants inside of summations:

∑n=2∞x⋅n(n−1)anxn−2+∑n=2∞2⋅n(n−1)anxn−2+∑n=1∞x⋅nanxn−1−∑n=0∞anxn=0

∑n=2∞n(n−1)anxn−1+∑n=2∞2n(n−1)anxn−2+∑n=1∞nanxn−∑n=0∞anxn=0

Change limits so that the exponents for  x  are the same in each summation:

∑n=1∞(n+1)nan+1xn+∑n=0∞2(n+2)(n+1)an+2xn+∑n=1∞nanxn−∑n=0∞anxn=0

Pull out any terms from sums, so that each sum starts at same lower limit  (n=1)

∑n=1∞(n+1)nan+1xn+4a2+∑n=1∞2(n+2)(n+1)an+2xn+∑n=1∞nanxn−a0−∑n=1∞anxn=0

Combine all sums into a single sum:

4a2−a0+∑n=1∞(2(n+2)(n+1)an+2+(n+1)nan+1+(n−1)an)xn=0

Now we must set each coefficient, including constant term  =0 :

4a2−a0=0⟹4a2=a0

2(n+2)(n+1)an+2+(n+1)nan+1+(n−1)an=0

We would usually let  a0  and  a1  be arbitrary constants. Then all other constants can be expressed in terms of these two constants, giving us two linearly independent solutions. However, since  a0=4a2 , I’ll choose  a1  and  a2  as the two arbitrary constants. We can still express all other constants in terms of  a1  and/or  a2 .

an+2=−(n+1)nan+1+(n−1)an2(n+2)(n+1)

a3=−(2⋅1)a2+0a12(3⋅2)=−16a2=−13!a2

a4=−(3⋅2)a3+1a22(4⋅3)=0=04!a2

a5=−(4⋅3)a4+2a32(5⋅4)=15!a2

a6=−(5⋅4)a5+3a42(6⋅5)=−26!a2

We see a pattern emerging here:

an=(−1)(n+1)n−4n!a2

This can be proven by mathematical induction. In fact, this is true for all  n≥0 , except for  n=1 , since  a1  is an arbitrary constant independent of  a0  (and therefore independent of  a2 ).

Plugging back into original power series for  y , we get:

y=a0+a1x+a2x2+a3x3+a4x4+a5x5+⋯

y=4a2+a1x+a2x2−13!a2x3+04!a2x4+15!a2x5−⋯

y=a1x+a2(4+x2−13!x3+04!x4+15!x5−⋯)

Notice that the expression following constant  a2  is  =4+  a power series (starting at  n=2 ). However, if we had the appropriate  x -term, we would have a power series starting at  n=0 . Since the other independent solution is simply  y1=x,  then we can let  a1=c1−3c2,   a2=c2 , and we get:

y=(c1−3c2)x+c2(4+x2−13!x3+04!x4+15!x5−⋯)

y=c1x+c2(4−3x+x2−13!x3+04!x4+15!x5−⋯)

y=c1x+c2(−0−40!+0−31!x−2−42!x2+3−43!x3−4−44!x4+5−45!x5−⋯)

y=c1x+c2∑n=0∞(−1)n+1n−4n!xn

Learn more about constants here:

https://brainly.com/question/11443401

#SPJ4

The two power series solutions of the given differential equation about the ordinary point x = 0. y'' + xy = 0  is y=c1x+c2∑n=0∞(−1)n+1n−4n!xn

The power series method is used to seek a power series solution to certain differential equations. so we need to first write power series as y and its derivatives then moving to differential equation then combining all into a single sum , and at last plugging back into original series.

Writing power series as y and its derivatives,

                   y=∑n=0∞anxn

⟹y′=∑n=1∞nanxn−1

⟹y′′=∑n=2∞n(n−1)anxn−2

Now moving to differential equation,

                                      (x+2)y′′+xy′−y=0

            (x+2)∑n=2∞n(n−1)anxn−2+x∑n=1∞nanxn−1−∑n=0∞anxn=0

x∑n=2∞n(n−1)anxn−2+2∑n=2∞n(n−1)anxn−2+x∑n=1∞nanxn−1−∑n=0∞anxn=0

∑n=2∞x⋅n(n−1)anxn−2+∑n=2∞2⋅n(n−1)anxn−2+∑n=1∞x⋅nanxn−1−∑n=0∞anxn=0

∑n=2∞n(n−1)anxn−1+∑n=2∞2n(n−1)anxn−2+∑n=1∞nanxn−∑n=0∞anxn=0

Change limits so that the exponents for  x  are the same in each summation:

∑n=1∞(n+1)nan+1xn+∑n=0∞2(n+2)(n+1)an+2xn+∑n=1∞nanxn−∑n=0∞anxn=0

∑n=1∞(n+1)nan+1xn+4a2+∑n=1∞2(n+2)(n+1)an+2xn+∑n=1∞nanxn−a0−∑n=1∞anxn=0

Combine all sums into a single sum:

4a2−a0+∑n=1∞(2(n+2)(n+1)an+2+(n+1)nan+1+(n−1)an)xn=0

Now we must set each coefficient, including constant term  =0 :

4a2−a0=0⟹4a2=a0

2(n+2)(n+1)an+2+(n+1)nan+1+(n−1)an=0

We would usually let  a0  and  a1  be arbitrary constant,

                                an+2=−(n+1)nan+1+(n−1)an2(n+2)(n+1)

                                    a3=−(2⋅1)a2+0a12(3⋅2)=−16a2=−13!a2

                                    a4=−(3⋅2)a3+1a22(4⋅3)=0=04!a2

                                    a5=−(4⋅3)a4+2a32(5⋅4)=15!a2

                                    a6=−(5⋅4)a5+3a42(6⋅5)=−26!a2

We see a pattern emerging here:

                                     an=(−1)(n+1)n−4n!a2

This can be proven by mathematical induction. In fact, this is true for all  n≥0 , except for  n=1 , since  a1  is an arbitrary constant independent of  a0  (and therefore independent of  a2 ).

Plugging back into original power series for  y , we get:

y=a0+a1x+a2x2+a3x3+a4x4+a5x5+⋯

y=4a2+a1x+a2x2−13!a2x3+04!a2x4+15!a2x5−⋯

y=a1x+a2(4+x2−13!x3+04!x4+15!x5−⋯)

Notice that the expression following constant  a2  is  =4+  a power series (starting at  n=2 ). However, if we had the appropriate  x -term, we would have a power series starting at  n=0 . Since the other independent solution is simply  y1=x,  then we can let  a1=c1−3c2,   a2=c2 , and we get:

                      y=(c1−3c2)x+c2(4+x2−13!x3+04!x4+15!x5−⋯)

                      y=c1x+c2(4−3x+x2−13!x3+04!x4+15!x5−⋯)

                                       

                      y=c1x+c2∑n=0∞(−1)n+1n−4n!xn

Learn more about power series here:

https://brainly.com/question/14318966

#SPJ4