The coordinates of point r(-8,0).
The coordinates of the point r(x,y) which divides the line segment joining the points p([tex]x_{1}[/tex],[tex]y_{1}[/tex]) and q([tex]x_{2}[/tex],[tex]y_{2}[/tex]) internally in the ratio :[tex]m_{1}[/tex][tex]m_{2}[/tex] are
[tex]\left(\frac{m_{1}x_{2}+ m_{2}x_{1} }{m_{1}+m_{2} } ,\frac{m_{1}y_{2}+ m_{2}y_{1} }{m_{1}+m_{2} }\Rifgt)[/tex]
Given that,
Two end points on the line q(-14,0) and s(2,0). point r(x,y) is the partition of the line segment from q to s in a ratio 3:5
[tex]m_{1}[/tex] = 3 and [tex]m_{2}[/tex] = 5
By using the midpoint formula
[tex]\left(\frac{m_{1}x_{2}+ m_{2}x_{1} }{m_{1}+m_{2} } ,\frac{m_{1}y_{2}+ m_{2}y_{1} }{m_{1}+m_{2} }\Rifgt)[/tex]
[tex]\left(\frac{3(2)+ 5(-14) }{3+5 } ,\frac{3(0)+ 5(0) }{3+5 }\Rifgt)[/tex]
[tex]\left(\frac{-64}{8 } ,\frac{0 }{8 }\Rifgt)[/tex]
[tex]\left(-8 ,0\Rifgt)[/tex]
Hence, The coordinates of point r(-8,0).
To learn more about midpoint formula from the given link:
https://brainly.com/question/4429656
#SPJ4