Respuesta :
Answer:
8x³ - 2x² - 51x - 45
Step-by-step explanation:
(x - 3)(2x + 3)(4x + 5) ← expand the 2nd/3rd factors using FOIL
= (x - 3)(8x² + 10x + 12x + 15)
= (x - 3)(8x² + 22x + 15)
multiply each term in the second factor by each term in the first factor.
x(8x² + 22x + 15) - 3(8x² + 22x + 15) ← distribute parenthesis
= 8x³ + 22x² + 15x - 24x² - 66x - 45 ← collect like terms
= 8x³ - 2x²- 51x - 45
Expand first 2 bracket first to get:
2x^2 + 3x - 6x - 9 & simplify, then expand with last bracket.
2x^2 - 3x - 9 (4x + 5)
2x^2 x 4x = 8x^4
2x^2 x 5 = 10x^2
Repeat for the next two numbers next to the bracket.
You get => 8x^3 + 10x^2 - 12x^2 - 15x - 36x - 45
Final simplified answer of:
8x^3 - 2x^2 - 51x - 45
Hope this helps!