The conversion of "z = 2(cos(π/3))" in polar form to rectangular form is equal to 1.
A polar coordinate can be defined as a two-dimensional coordinate system, wherein each point on a plane is typically determined by a distance (r) from the pole (origin) and an angle (θ) from a reference direction (polar axis).
In geometry, the relationship between a polar coordinate (r, θ) and a rectangular coordinate (x, y) based on the conversion rules is given by the following polar functions:
a = rcos(θ) ....equation 1.
b = rsin(θ) ....equation 2.
Where:
Note: The exact value of cos(π/3) is equal to ½.
Substituting the given parameters into the formula, we have;
z = 2(½)
z = 2/2
z = 1.
In conclusion, we can logically deduce that the conversion of "z = 2(cos(π/3))" in polar form to rectangular form is equal to 1.
Read more on polar coordinates here: https://brainly.com/question/2193539
#SPJ1
Complete Question:
Convert z = 2(cos(π/3)) in rectangular form