Respuesta :
The answer is y = -5.5x - 52.
First, let's find the slope of the line.
m = Δy/Δx
- m = -8 - 3 / -8 - (-10)
- m = -11 / -8 + 10
- m = -11/2
- m = -5.5
Now, substitute the slope and one of the given points in the point slope equation.
y - y₁ = m (x - x₁)
- y - 3 = -5.5 (x - (-10))
- y - 3 = -5.5 (x + 10)
- y - 3 = -5.5x - 55
- y = -5.5x - 52
Answer: y=-5,5x-52.
Step-by-step explanation:
Equation of a straight line
[tex]\displaystyle\\\boxed {\frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1} }[/tex]
[tex](-10;3)\ \ \ \ \ (-8;-8).\\\displaystyle\frac{x-(-10)}{-8-(-10)} =\frac{y-3}{-8-3}\\ \frac{x+10}{-8+10}=\frac{y-3}{-11} \\ \frac{x+10}{2}=\frac{y-3}{-11} \\-11*(x+10)=2*(y-3)\\-11x-110=2y-6\\2y=-11x-104\ |:2\\y=-5,5x-52.[/tex]