Respuesta :

The answer is y = -5.5x - 52.

First, let's find the slope of the line.

m = Δy/Δx

  • m = -8 - 3 / -8 - (-10)
  • m = -11 / -8 + 10
  • m = -11/2
  • m = -5.5

Now, substitute the slope and one of the given points in the point slope equation.

y - y₁ = m (x - x₁)

  • y - 3 = -5.5 (x - (-10))
  • y - 3 = -5.5 (x + 10)
  • y - 3 = -5.5x - 55
  • y = -5.5x - 52

Answer: y=-5,5x-52.

Step-by-step explanation:

                        Equation of a straight line

                               [tex]\displaystyle\\\boxed {\frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1} }[/tex]

[tex](-10;3)\ \ \ \ \ (-8;-8).\\\displaystyle\frac{x-(-10)}{-8-(-10)} =\frac{y-3}{-8-3}\\ \frac{x+10}{-8+10}=\frac{y-3}{-11} \\ \frac{x+10}{2}=\frac{y-3}{-11} \\-11*(x+10)=2*(y-3)\\-11x-110=2y-6\\2y=-11x-104\ |:2\\y=-5,5x-52.[/tex]