Applying properties of exponents, the quotient is given as follows:
[tex]2\sqrt[3]{3} - \sqrt[3]{18}[/tex]
The expression is given by:
[tex]\frac{6 - 3\sqrt[3]{6}}{\sqrt[3]{9}}[/tex]
The 3 can be inserted into the cube root, as follows:
[tex]\frac{6 - 3\sqrt[3]{6}}{\sqrt[3]{9}} = \frac{6 - \sqrt[3]{6 \times 3³}}{\sqrt[3]{9}}[/tex]
Applying the subtraction, we have that the expression is:
[tex]\frac{6}{\sqrt[3]{9}} - \frac{\sqrt[3]{162}}{\sqrt[3]{9}} = \frac{6}{\sqrt[3]{9}} - \sqrt[3]{\frac{162}{9}} = \frac{6}{\sqrt[3]{9}} - \sqrt[3]{18}[/tex]
The denominator can be simplified as follows:
[tex]\sqrt[3]{9} = \sqrt[3]{3^2} = 3^{\frac{2}{3}}[/tex]
Then:
[tex]\frac{6}{\sqrt[3]{9}} = \frac{2 \times 3}{3^{\frac{2}{3}}} = 2 \times 3^{1 - \frac{2}{3}} = 2 \times 3^{\frac{1}{3}} = 2\sqrt[3]{3}[/tex]
Hence the quotient is given by:
[tex]2\sqrt[3]{3} - \sqrt[3]{18}[/tex]
More can be learned about properties of exponents at https://brainly.com/question/25263760
#SPj1