Respuesta :

Answer: 2

Step-by-step explanation:

[tex]y=\frac{1}{3}x^2 +2x+5 \longrightarrow \frac{dy}{dx}=\frac{2}{3}x+2[/tex]

Setting this equal to 0 yields [tex]x=-3[/tex].

When [tex]x=-3[/tex], [tex]y=2[/tex]

Answer:

  • A. 2

Step-by-step explanation:

Given quadratic equation:

  • y = (1/3)x² + 2x + 5

Its leading coefficient is positive, so it has minimum value at vertex.

The x-coordinate of the vertex is:

  • x = -b/(2a)

Substitute the coefficients:

  • x = - 2/(2*1/3) = - 3

Find the value of y at vertex:

  • y = (1/3)(-3)² + 2(- 3) + 5 = 3 - 6 + 5 = 2

The matching answer choice is A.