Respuesta :
Answer: 2
Step-by-step explanation:
[tex]y=\frac{1}{3}x^2 +2x+5 \longrightarrow \frac{dy}{dx}=\frac{2}{3}x+2[/tex]
Setting this equal to 0 yields [tex]x=-3[/tex].
When [tex]x=-3[/tex], [tex]y=2[/tex]
Answer:
- A. 2
Step-by-step explanation:
Given quadratic equation:
- y = (1/3)x² + 2x + 5
Its leading coefficient is positive, so it has minimum value at vertex.
The x-coordinate of the vertex is:
- x = -b/(2a)
Substitute the coefficients:
- x = - 2/(2*1/3) = - 3
Find the value of y at vertex:
- y = (1/3)(-3)² + 2(- 3) + 5 = 3 - 6 + 5 = 2
The matching answer choice is A.