Evaluate the interval (Calculus 2)

Answer:
[tex]2 \tan (6x)+2 \sec (6x)+\text{C}[/tex]
Step-by-step explanation:
Fundamental Theorem of Calculus
[tex]\displaystyle \int \text{f}(x)\:\text{d}x=\text{F}(x)+\text{C} \iff \text{f}(x)=\dfrac{\text{d}}{\text{d}x}(\text{F}(x))[/tex]
If differentiating takes you from one function to another, then integrating the second function will take you back to the first with a constant of integration.
Given indefinite integral:
[tex]\displaystyle \int \dfrac{12}{1-\sin (6x)}\:\:\text{d}x[/tex]
[tex]\boxed{\begin{minipage}{5 cm}\underline{Terms multiplied by constants}\\\\$\displaystyle \int a\:\text{f}(x)\:\text{d}x=a \int \text{f}(x) \:\text{d}x$\end{minipage}}[/tex]
If the terms are multiplied by constants, take them outside the integral:
[tex]\implies 12\displaystyle \int \dfrac{1}{1-\sin (6x)}\:\:\text{d}x[/tex]
Multiply by the conjugate of 1 - sin(6x) :
[tex]\implies 12\displaystyle \int \dfrac{1}{1-\sin (6x)} \cdot \dfrac{1+\sin(6x)}{1+\sin(6x)}\:\:\text{d}x[/tex]
[tex]\implies 12\displaystyle \int \dfrac{1+\sin(6x)}{1-\sin^2(6x)} \:\:\text{d}x[/tex]
[tex]\textsf{Use the identity} \quad \sin^2 x+ \cos^2 x=1:[/tex]
[tex]\implies \sin^2 (6x) + \cos^2 (6x)=1[/tex]
[tex]\implies \cos^2 (6x)=1- \sin^2 (6x)[/tex]
[tex]\implies 12\displaystyle \int \dfrac{1+\sin(6x)}{\cos^2(6x)} \:\:\text{d}x[/tex]
Expand:
[tex]\implies 12\displaystyle \int \dfrac{1}{\cos^2(6x)}+\dfrac{\sin(6x)}{\cos^2(6x)} \:\:\text{d}x[/tex]
[tex]\textsf{Use the identities }\:\: \sec \theta=\dfrac{1}{\cos \theta} \textsf{ and } \tan\theta=\dfrac{\sin \theta}{\cos \theta}:[/tex]
[tex]\implies 12\displaystyle \int \sec^2(6x)+\dfrac{\tan(6x)}{\cos(6x)} \:\:\text{d}x[/tex]
[tex]\implies 12\displaystyle \int \sec^2(6x)+\tan(6x)\sec(6x) \:\:\text{d}x[/tex]
[tex]\boxed{\begin{minipage}{5 cm}\underline{Integrating $\sec^2 kx$}\\\\$\displaystyle \int \sec^2 kx\:\text{d}x=\dfrac{1}{k} \tan kx\:\:(+\text{C})$\end{minipage}}[/tex]
[tex]\boxed{\begin{minipage}{6 cm}\underline{Integrating $ \sec kx \tan kx$}\\\\$\displaystyle \int \sec kx \tan kx\:\text{d}x= \dfrac{1}{k}\sec kx\:\:(+\text{C})$\end{minipage}}[/tex]
[tex]\implies 12 \left[\dfrac{1}{6} \tan (6x)+\dfrac{1}{6} \sec (6x) \right]+\text{C}[/tex]
Simplify:
[tex]\implies \dfrac{12}{6} \tan (6x)+\dfrac{12}{6} \sec (6x)+\text{C}[/tex]
[tex]\implies 2 \tan (6x)+2 \sec (6x)+\text{C}[/tex]
Learn more about indefinite integration here:
https://brainly.com/question/27805589
https://brainly.com/question/28155016
Substitute [tex]y=6x[/tex] and [tex]dy=6\,dx[/tex] to transform the integral to
[tex]\displaystyle \int \frac{12}{1-\sin(6x)} \, dx = 2 \int \frac{dy}{1 - \sin(y)}[/tex]
Now substitute [tex]t=\tan\left(\frac y2\right)[/tex] and [tex]dt=\frac12 \sec^2\left(\frac y2\right) \, dy[/tex] to transform this to
[tex]\displaystyle 2 \int \frac{dy}{1 - \sin(y)} = 2 \int \frac1{1-\frac{2t}{1+t^2}}\cdot\frac{2\,dt}{1+t^2} = 4 \int \frac{dt}{(t-1)^2}[/tex]
Finally, substitute [tex]s = t-1[/tex] and [tex]ds=dt[/tex] to get
[tex]\displaystyle 4 \int \frac{dt}{(t-1)^2} = 4 \int \frac{ds}{s^2} = -\dfrac4s + C[/tex]
Now recover the antiderivative in terms of [tex]x[/tex].
[tex]\displaystyle \int \frac{12}{1-\sin(6x)} \, dx = -\frac4s + C \\\\ ~~~~~~~~ = -\frac4{t-1} + C \\\\ ~~~~~~~~ = -\frac4{\tan\left(\frac y2\right) - 1} + C \\\\ ~~~~~~~~ = \boxed{-\frac4{\tan(3x) - 1} + C}[/tex]