For the following integral, find the approximate value of the integral with 4 subdivisions using midpoint, trapezoid, and Simpsons approximation. Evaluate all trig functions, leave your answers with radicals when needed.

For the following integral find the approximate value of the integral with 4 subdivisions using midpoint trapezoid and Simpsons approximation Evaluate all trig class=

Respuesta :

Answer:

[tex]\textsf{Midpoint rule}: \quad \dfrac{2\pi}{\sqrt[3]{2}}[/tex]

[tex]\textsf{Trapezium rule}: \quad \pi[/tex]

[tex]\textsf{Simpson's rule}: \quad \dfrac{4 \pi}{3}[/tex]

Step-by-step explanation:

Midpoint rule

[tex]\displaystyle \int_{a}^{b} f(x) \:\:\text{d}x \approx h\left[f(x_{\frac{1}{2}})+f(x_{\frac{3}{2}})+...+f(x_{n-\frac{3}{2}})+f(x_{n-\frac{1}{2}})\right]\\\\ \quad \textsf{where }h=\dfrac{b-a}{n}[/tex]

Trapezium rule

[tex]\displaystyle \int_{a}^{b} y\: \:\text{d}x \approx \dfrac{1}{2}h\left[(y_0+y_n)+2(y_1+y_2+...+y_{n-1})\right] \quad \textsf{where }h=\dfrac{b-a}{n}[/tex]

Simpson's rule

[tex]\displaystyle \int_{a}^{b} y \:\:\text{d}x \approx \dfrac{1}{3}h\left(y_0+4y_1+2y_2+4y_3+2y_4+...+2y_{n-2}+4y_{n-1}+y_n\right)\\\\ \quad \textsf{where }h=\dfrac{b-a}{n}[/tex]

Given definite integral:

[tex]\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x[/tex]

Therefore:

  • a = 0
  • b = 2π

Calculate the subdivisions:

[tex]\implies h=\dfrac{2 \pi - 0}{4}=\dfrac{1}{2}\pi[/tex]

Midpoint rule

Sub-intervals are:

[tex]\left[0, \dfrac{1}{2}\pi \right], \left[\dfrac{1}{2}\pi, \pi \right], \left[\pi , \dfrac{3}{2}\pi \right], \left[\dfrac{3}{2}\pi, 2 \pi \right][/tex]

The midpoints of these sub-intervals are:

[tex]\dfrac{1}{4} \pi, \dfrac{3}{4} \pi, \dfrac{5}{4} \pi, \dfrac{7}{4} \pi[/tex]

Therefore:

[tex]\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x & \approx \dfrac{1}{2}\pi \left[f \left(\dfrac{1}{4} \pi \right)+f \left(\dfrac{3}{4} \pi \right)+f \left(\dfrac{5}{4} \pi \right)+f \left(\dfrac{7}{4} \pi \right)\right]\\\\& = \dfrac{1}{2}\pi \left[\sqrt[3]{\dfrac{1}{2}} +\sqrt[3]{\dfrac{1}{2}}+\sqrt[3]{\dfrac{1}{2}}+\sqrt[3]{\dfrac{1}{2}}\right]\\\\ & = \dfrac{2\pi}{\sqrt[3]{2}}\\\\& = 4.986967483...\end{aligned}[/tex]

Trapezium rule

[tex]\begin{array}{| c | c | c | c | c | c |}\cline{1-6} &&&&&\\ x & 0 & \dfrac{1}{2}\pi & \pi & \dfrac{3}{2} \pi & 2 \pi \\ &&&&&\\\cline{1-6} &&&&& \\y & 0 & 1 & 0 & 1 & 0\\ &&&&&\\\cline{1-6}\end{array}[/tex]

[tex]\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x & \approx \dfrac{1}{2} \cdot \dfrac{1}{2} \pi \left[(0+0)+2(1+0+1)\right]\\\\& = \dfrac{1}{4} \pi \left[4\right]\\\\& = \pi\end{aligned}[/tex]

Simpson's rule

[tex]\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x & \approx \dfrac{1}{3}\cdot \dfrac{1}{2} \pi \left(0+4(1)+2(0)+4(1)+0\right)\\\\& = \dfrac{1}{3}\cdot \dfrac{1}{2} \pi \left(8\right)\\\\& = \dfrac{4}{3} \pi\end{aligned}[/tex]

ACCESS MORE
EDU ACCESS