Consider the ordinary differential equation (answer questions in picture)

a. Given the 2nd order ODE
[tex]y''(x) = 4y(x) + 4[/tex]
if we substitute [tex]z(x)=y'(x)+2y(x)[/tex] and its derivative, [tex]z'(x)=y''(x)+2y'(x)[/tex], we can eliminate [tex]y(x)[/tex] and [tex]y''(x)[/tex] to end up with the ODE
[tex]z'(x) - 2y'(x) = 4\left(\dfrac{z(x)-y'(x)}2\right) + 4[/tex]
[tex]z'(x) - 2y'(x) = 2z(x) - 2y'(x) + 4[/tex]
[tex]\boxed{z'(x) = 2z(x) + 4}[/tex]
and since [tex]y(0)=y'(0)=1[/tex], it follows that [tex]z(0)=y'(0)+2y(0)=3[/tex].
b. I'll solve with an integrating factor.
[tex]z'(x) = 2z(x) + 4[/tex]
[tex]z'(x) - 2z(x) = 4[/tex]
[tex]e^{-2x} z'(x) - 2 e^{-2x} z(x) = 4e^{-2x}[/tex]
[tex]\left(e^{-2x} z(x)\right)' = 4e^{-2x}[/tex]
[tex]e^{-2x} z(x) = -2e^{-2x} + C[/tex]
[tex]z(x) = -2 + Ce^{2x}[/tex]
Since [tex]z(0)=3[/tex], we find
[tex]3 = -2 + Ce^0 \implies C=5[/tex]
so the particular solution for [tex]z(x)[/tex] is
[tex]\boxed{z(x) = 5e^{-2x} - 2}[/tex]
c. Knowing [tex]z(x)[/tex], we recover a 1st order ODE for [tex]y(x)[/tex],
[tex]z(x) = y'(x) + 2y(x) \implies y'(x) + 2y(x) = 5e^{-2x} - 2[/tex]
Using an integrating factor again, we have
[tex]e^{2x} y'(x) + 2e^{2x} y(x) = 5 - 2e^{2x}[/tex]
[tex]\left(e^{2x} y(x)\right)' = 5 - 2e^{2x}[/tex]
[tex]e^{2x} y(x) = 5x - e^{2x} + C[/tex]
[tex]y(x) = 5xe^{-2x} - 1 + Ce^{-2x}[/tex]
Since [tex]y(0)=1[/tex], we find
[tex]1 = 0 - 1 + Ce^0 \implies C=2[/tex]
so that
[tex]\boxed{y(x) = (5x+2)e^{-2x} - 1}[/tex]
6.a) The differential equation for z(x) is z'(x) = 2z(x) + 4, z(0) = 3.
6.b) The value of z(x) is [tex]z(x) = 5e^{2x} - 2[/tex].
6.c) The value of y(x) is [tex]y(x) = \frac{5e^{2x}}{4} - \frac{1}{4e^{2x}} -1[/tex].
The given ordinary differential equation is y''(x) = 4y(x) + 4, y(0) = y'(0) = 1 ... (d).
We are also given a substitution function, z(x) = y'(x) + 2y(x) ... (z).
Putting x = 0, we get:
z(0) = y'(0) + 2y(0),
or, z(0) = 1 + 2*1 = 3.
Rearranging (z), we can write it as:
z(x) = y'(x) + 2y(x),
or, y'(x) = z(x) - 2y(x) ... (i).
Differentiating (z) with respect to x, we get:
z'(x) = y''(x) + 2y'(x),
or, y''(x) = z'(x) - 2y'(x) ... (ii).
Substituting the value of y''(x) from (ii) in (d) we get:
y''(x) = 4y(x) + 4,
or, z'(x) - 2y'(x) = 4y(x) + 4.
Substituting the value of y'(x) from (i) we get:
z'(x) - 2y'(x) = 4y(x) + 4,
or, z'(x) - 2(z(x) - 2y(x)) = 4y(x) + 4,
or, z'(x) - 2z(x) + 4y(x) = 4y(x) + 4,
or, z'(x) = 2z(x) + 4y(x) - 4y(x) + 4,
or, z'(x) = 2z(x) + 4.
The initial value of z(0) was calculated to be 3.
6.a) The differential equation for z(x) is z'(x) = 2z(x) + 4, z(0) = 3.
Transforming z(x) = dz/dx, and z = z(x), we get:
dz/dx = 2z + 4,
or, dz/(2z + 4) = dx.
Integrating both sides, we get:
∫dz/(2z + 4) = ∫dx,
or, {ln (z + 2)}/2 = x + C,
or, [tex]\sqrt{z+2} = e^{x + C}[/tex],
or, [tex]z =Ce^{2x}-2[/tex] ... (iii).
Substituting z = 3, and x = 0, we get:
[tex]3 = Ce^{2*0} - 2\\\Rightarrow C - 2 = 3\\\Rightarrow C = 5.[/tex]
Substituting C = 5, in (iii), we get:
[tex]z = 5e^{2x} - 2[/tex].
6.b) The value of z(x) is [tex]z(x) = 5e^{2x} - 2[/tex].
Substituting the value of z(x) in (z), we get:
z(x) = y'(x) + 2y(x),
or, 5e²ˣ - 2 = y'(x) + 2y(x),
which gives us:
[tex]y(x) = \frac{5e^{2x}}{4} - \frac{1}{4e^{2x}} -1[/tex] for the initial condition y(x) = 0.
6.c) The value of y(x) is [tex]y(x) = \frac{5e^{2x}}{4} - \frac{1}{4e^{2x}} -1[/tex].
Learn more about differential equations at
https://brainly.com/question/18760518
#SPJ1