contestada

Starting from the geometric series, use power series operations to
determine the Maclaurin series. See picture

Starting from the geometric series use power series operations to determine the Maclaurin series See picture class=

Respuesta :

a. By replacing [tex]x[/tex] with [tex]-x^2[/tex] in the power series, we get

[tex]\displaystyle \frac1{1+x^2} = \sum_{n=0}^\infty (-x^2)^n = \sum_{n=0}^\infty (-1)^n x^{2n}[/tex]

Integrate both sides to recover [tex]\arctan(x)[/tex] on the left.

[tex]\displaystyle \int \frac{dx}{1+x^2} = \int \sum_{n=0}^\infty (-x^2)^n = \sum_{n=0}^\infty (-1)^n x^{2n} \, dx[/tex]

[tex]\displaystyle \arctan(x) = C + \sum_{n=0}^\infty \frac{(-1)^n}{2n+1} x^{2n+1} \, dx[/tex]

By letting [tex]x=0[/tex] on both sides, we find [tex]C=0[/tex], so that

[tex]\displaystyle \arctan(x) = \sum_{n=0}^\infty \frac{(-1)^n}{2n+1} x^{2n+1} \, dx[/tex]

Then dividing both sides by [tex]x[/tex] gives

[tex]\displaystyle \boxed{\frac{\arctan(x)}x = \sum_{n=0}^\infty \frac{(-1)^n}{2n+1} x^{2n} \, dx}[/tex]

b. Let [tex]x=\frac1{\sqrt3}[/tex]. Then

[tex]\displaystyle \frac{\arctan\left(\frac1{\sqrt3}\right)}{\frac1{\sqrt3}} = \sum_{n=0}^\infty \frac{(-1)^n}{2n+1} \left(\dfrac1\sqrt3\right)^{2n}[/tex]

[tex]\displaystyle \sqrt3 \arctan\left(\frac1{\sqrt3}\right) = \sum_{n=0}^\infty \frac1{2n+1} \left(-\frac13\right)^n[/tex]

Taking the first few terms from the infinite series, we can approximate

[tex]n=0 \implies \sqrt3\arctan\left(\dfrac1{\sqrt3}\right) \approx 1[/tex]

[tex]0\le n\le1 \implies \sqrt3\arctan\left(\dfrac1{\sqrt3}\right) \approx 1+\dfrac13\left(-\dfrac13\right) = \dfrac89[/tex]

which together suggest the value we want is bounded between 8/9 and 9/9 = 1, hence [tex]\boxed{p=8}[/tex].

Since the series is alternating and converges on [tex]-1<x<0\cup0<x<1[/tex],

[tex]\displaystyle \left| \sum_{n=0}^\infty a_n - \sum_{n=0}^0 a_n \right| < |a_1| = \left|\frac13 \left(-\frac13\right)^1\right| = \frac19[/tex]

and

[tex]\displaystyle \left| \sum_{n=0}^\infty a_n - \sum_{n=0}^1 a_n \right| < |a_2| = \left|\frac15 \left(-\frac13\right)^2\right| = \frac1{45}[/tex]

which tells us the first approximation is off by at most 1/9 from the actual value of [tex]\frac\pi{2\sqrt3}[/tex], whereas the second approximation is off by at most 1/45 from the actual value. In other words, the second approximation is closer, so [tex]\frac\pi{2\sqrt3}[/tex] is closer to [tex]\frac p9[/tex] :

[tex]\dfrac89 \approx 0.8889[/tex]

[tex]\dfrac{\pi}{2\sqrt3}\approx0.9069[/tex]

[tex]\dfrac99 = 1[/tex]

ACCESS MORE
EDU ACCESS