Starting from the geometric series, use power series operations to
determine the Maclaurin series. See picture

a. By replacing [tex]x[/tex] with [tex]-x^2[/tex] in the power series, we get
[tex]\displaystyle \frac1{1+x^2} = \sum_{n=0}^\infty (-x^2)^n = \sum_{n=0}^\infty (-1)^n x^{2n}[/tex]
Integrate both sides to recover [tex]\arctan(x)[/tex] on the left.
[tex]\displaystyle \int \frac{dx}{1+x^2} = \int \sum_{n=0}^\infty (-x^2)^n = \sum_{n=0}^\infty (-1)^n x^{2n} \, dx[/tex]
[tex]\displaystyle \arctan(x) = C + \sum_{n=0}^\infty \frac{(-1)^n}{2n+1} x^{2n+1} \, dx[/tex]
By letting [tex]x=0[/tex] on both sides, we find [tex]C=0[/tex], so that
[tex]\displaystyle \arctan(x) = \sum_{n=0}^\infty \frac{(-1)^n}{2n+1} x^{2n+1} \, dx[/tex]
Then dividing both sides by [tex]x[/tex] gives
[tex]\displaystyle \boxed{\frac{\arctan(x)}x = \sum_{n=0}^\infty \frac{(-1)^n}{2n+1} x^{2n} \, dx}[/tex]
b. Let [tex]x=\frac1{\sqrt3}[/tex]. Then
[tex]\displaystyle \frac{\arctan\left(\frac1{\sqrt3}\right)}{\frac1{\sqrt3}} = \sum_{n=0}^\infty \frac{(-1)^n}{2n+1} \left(\dfrac1\sqrt3\right)^{2n}[/tex]
[tex]\displaystyle \sqrt3 \arctan\left(\frac1{\sqrt3}\right) = \sum_{n=0}^\infty \frac1{2n+1} \left(-\frac13\right)^n[/tex]
Taking the first few terms from the infinite series, we can approximate
[tex]n=0 \implies \sqrt3\arctan\left(\dfrac1{\sqrt3}\right) \approx 1[/tex]
[tex]0\le n\le1 \implies \sqrt3\arctan\left(\dfrac1{\sqrt3}\right) \approx 1+\dfrac13\left(-\dfrac13\right) = \dfrac89[/tex]
which together suggest the value we want is bounded between 8/9 and 9/9 = 1, hence [tex]\boxed{p=8}[/tex].
Since the series is alternating and converges on [tex]-1<x<0\cup0<x<1[/tex],
[tex]\displaystyle \left| \sum_{n=0}^\infty a_n - \sum_{n=0}^0 a_n \right| < |a_1| = \left|\frac13 \left(-\frac13\right)^1\right| = \frac19[/tex]
and
[tex]\displaystyle \left| \sum_{n=0}^\infty a_n - \sum_{n=0}^1 a_n \right| < |a_2| = \left|\frac15 \left(-\frac13\right)^2\right| = \frac1{45}[/tex]
which tells us the first approximation is off by at most 1/9 from the actual value of [tex]\frac\pi{2\sqrt3}[/tex], whereas the second approximation is off by at most 1/45 from the actual value. In other words, the second approximation is closer, so [tex]\frac\pi{2\sqrt3}[/tex] is closer to [tex]\frac p9[/tex] :
[tex]\dfrac89 \approx 0.8889[/tex]
[tex]\dfrac{\pi}{2\sqrt3}\approx0.9069[/tex]
[tex]\dfrac99 = 1[/tex]