At time [tex]t[/tex] seconds, the mass has angular speed
[tex]\omega = \left(3.31\dfrac{\rm rad}{\mathrm s^2}\right) t[/tex]
and hence linear speed
[tex]v = (1.4\,\mathrm m) \omega = (1.4\,\mathrm m) \left(3.31\dfrac{\rm rad}{\mathrm s^2}\right) t[/tex]
After 8 s, its linear speed is
[tex]v = (1.4\,\mathrm m) \left(3.31\dfrac{\rm rad}{\mathrm s^2}\right) (8\,\mathrm s) = 37.072 \dfrac{\rm m}{\rm s} \approx 37 \dfrac{\rm m}{\rm s}[/tex]
and has centripetal acceleration with magnitude
[tex]a = \dfrac{v^2}{1.4\,\rm m} \approx 981.667\dfrac{\rm m}{\mathrm s^2} \approx 980 \dfrac{\rm m}{\mathrm s^2}[/tex]
To maintain this linear speed, by Newton's second law the required centripetal force should have magnitude
[tex]F = (0.34\,\mathrm{kg}) a \approx 333.767\,\mathrm N \approx \boxed{330 \,\mathrm N}[/tex]