1) (x-y)(y-2)(x+2) / 2x^2+4yz+6 =
2) 4(x+y)(x-y)(y-x) / t+d+m =
3) ( √25+√9 / 2 ) + √21675 =
4) (9x^2+3x+27)(3+6y)(4+6y) / 1+2a+38+4c+2000z =
5) (x^2+6x+5) / (x+2)(x+6) =
^^^Simplify
6) (xy/m) + (xm/y) - (m/x) = 63 x=
Isolate

Could anyone help me with these?

Respuesta :

See below for the solution to each expression

How to solve the expressions?

Expression 1

The expression is given as:

(x-y)(y-z)(x+z)/(2x^2+4yz+6)

Expand the numerator

(x^2 - y^2 -xz + yz)(x + z)/(2x^2+4yz+6)

Further, expand the numerator

(x^3 - xy^2 - x^2z + xyz + x^2z - y^2z - xz^2 + yz^2)/(2x^2+4yz+6)

Evaluate the like terms

(x^3 - xy^2  + xyz - y^2z - xz^2 + yz^2)/(2x^2+4yz+6)

Hence, the equivalent expression of (x-y)(y-z)(x+z)/(2x^2+4yz+6) is (x^3 - xy^2  + xyz - y^2z - xz^2 + yz^2)/(2x^2+4yz+6)

Expression 2

The expression is given as:

4(x+y)(x-y)(y-x)

Apply the difference of two squares

4(x^2 - y^2)(y - x)

Expand the expressions in the brackets

4(x^2y - x^3 - y^3 + xy^2)

Open the bracket

4x^2y - 4x^3 - 4y^3 + 4xy^2

Hence, the equivalent expression of 4(x+y)(x-y)(y-x) is 4x^2y - 4x^3 - 4y^3 + 4xy^2

Expression 3

The expression is given as:

(√25+√9/2) + √21675

Take the square roots of 25, 9 and 21675

(5 +3/2) + 5√867

Evaluate the sum

13/2 + 5√867

Hence, the equivalent expression of (√25+√9/2) + √21675 is 13/2 + 5√867

Expression 4

The expression is given as:

(9x^2+3x+27)(3+6y)(4+6y) /1+2a+38+4c+2000z

Factor out 3 and 2 from the numerator

3(3x^2 +x + 9) * 3(1 + 2y) * 2(2 + 3y)/1+2a+38+4c+2000z

This gives

18(3x^2 +x + 9)(1 + 2y)(2 + 3y)/1+2a+38+4c+2000z

The expression cannot be further simplified.

Hence, the equivalent expression of (9x^2+3x+27)(3+6y)(4+6y) /1+2a+38+4c+2000z is 18(3x^2 +x + 9)(1 + 2y)(2 + 3y)/1+2a+38+4c+2000z

Expression 5

The expression is given as:

(x^2+6x+5)/(x+2)(x+6)

Factorize the numerator

(x + 1)(x + 5)/(x + 2)(x + 6)

Hence, the equivalent expression of (x^2+6x+5)/(x+2)(x+6) is (x + 1)(x + 5)/(x + 2)(x + 6)

Expression 6

6) (xy/m) + (xm/y) - (m/x) = 63

Factor out x

x(y/m + m/y) - m/x = 63

Evaluate the sum

x(y^2 + m^2)/y - m/x = 63

Multiply through by xy

x^2(y^2 + m^2) - my = 63xy

Add my to both sides

x^2(y^2 + m^2)  = 63xy + my

The above implies that the variable x cannot be isolated from the equation

Read more about expressions at:

https://brainly.com/question/723406

#SPJ1

ACCESS MORE
EDU ACCESS
Universidad de Mexico