This is an exercise in the general or combined gas law.
To start solving this exercise, we obtain the data:
We use the following formula:
Where
We clear the general formula for the final pressure.
[tex]\large\displaystyle\text{$\begin{gathered}\sf P_{2}=\frac{P_{1}V_{1}T_{2} }{V_{2}T_{1}} \ \to \ Clear \ formula \end{gathered}$}[/tex]
We substitute our data into the formula to solve:
[tex]\large\displaystyle\text{$\begin{gathered}\sf P_{2}=\frac{(1.3 \ atm)(13\not{l})(288\not{k} )}{(27 \not{l})(298 \not{K})} \end{gathered}$}[/tex]
[tex]\large\displaystyle\text{$\begin{gathered}\sf P_{2}=\frac{4867.2}{8046} \ atm \end{gathered}$}[/tex]
[tex]\boxed{\large\displaystyle\text{$\begin{gathered}\sf P_{2}=0.604 \ atm \end{gathered}$}}[/tex]
If I measure the pressure after the change by 1.3 atm, the original pressure of the gas will be 0.604 atm.