The buoyant force acting on the cylinder is, [tex]Fb = \rho Ahg[/tex]. Here A is the cross-sectional area of the cylinder, h is the height of the cylinder, ρ is the density of the cylinder, and g is the acceleration due to gravity.
This buoyant force is also equal to the volume of the fluid displaced. [tex]Fb = \sigma h(A-x)g[/tex]. Here σ is the density of the fluid.
Equate the above two equations and solve for x.
[tex]\rho Ahg = \sigma A(h-x)g\\\rho h = \sigma h - \sigma x\\x = \frac{(\sigma - \rho)h}{\sigma}[/tex]
So, the distance x depends on the density of the fluid, density of the cylinder and the height of the cylinder.
1. The density of the cylinder is same and distance x is independent of the diameter of the cylinder. Therefor, there will be no change in the distance x. Hence, the correct answer is No change.
2. Now the height is changing keeping the density same. As the distance x is directly proportional to the height, the distance x will increase.
3. The density of the added liquid is greater than of the water and it does not mix with the water. So, the liquid will settle down and there will be no change in the distance x.
4. The density of the added liquid is less than that of the water and it does not mix with the water. So, the liquid will not settle down and the distance x will change. The change in distance x can be determined as follow:
[tex]\rho Agh = \sigma' Axg + \sigma A(h-x)g\\\rho h=\sigma' x + \sigma h - \sigma x\\x=(\frac{\sigma - \rho}{\sigma - \sigma'})h[/tex]
Here, σ' is the density of the added liquid.
From the above relation it is clear, that on adding the liquid of the density less than that of water, the denominator term become small ando so the value of x will increase.
5. On removing some of the water inside the glass, the height of the water column will decrease, but the value of x does not depend on the height of the water column. So, there will be no change in the distance x.
6. The density of the new cylinder is smaller than that of the earlier one. So, the numerator term will increase. Therefore, the value of x will increase.
See more about density at: brainly.com/question/15164682
#SPJ1