Respuesta :
Let [tex]A(t)[/tex] = amount of salt (in pounds) in the tank at time [tex]t[/tex] (in minutes). Then [tex]A(0) = 11[/tex].
Salt flows in at a rate
[tex]\left(0.6\dfrac{\rm lb}{\rm gal}\right) \left(3\dfrac{\rm gal}{\rm min}\right) = \dfrac95 \dfrac{\rm lb}{\rm min}[/tex]
and flows out at a rate
[tex]\left(\dfrac{A(t)\,\rm lb}{75\,\rm gal + \left(3\frac{\rm gal}{\rm min} - 3.25\frac{\rm gal}{\rm min}\right)t}\right) \left(3.25\dfrac{\rm gal}{\rm min}\right) = \dfrac{13A(t)}{300-t} \dfrac{\rm lb}{\rm min}[/tex]
where 4 quarts = 1 gallon so 13 quarts = 3.25 gallon.
Then the net rate of salt flow is given by the differential equation
[tex]\dfrac{dA}{dt} = \dfrac95 - \dfrac{13A}{300-t}[/tex]
which I'll solve with the integrating factor method.
[tex]\dfrac{dA}{dt} + \dfrac{13}{300-t} A = \dfrac95[/tex]
[tex]-\dfrac1{(300-t)^{13}} \dfrac{dA}{dt} - \dfrac{13}{(300-t)^{14}} A = -\dfrac9{5(300-t)^{13}}[/tex]
[tex]\dfrac d{dt} \left(-\dfrac1{(300-t)^{13}} A\right) = -\dfrac9{5(300-t)^{13}}[/tex]
Integrate both sides. By the fundamental theorem of calculus,
[tex]\displaystyle -\dfrac1{(300-t)^{13}} A = -\dfrac1{(300-t)^{13}} A\bigg|_{t=0} - \frac95 \int_0^t \frac{du}{(300-u)^{13}} [/tex]
[tex]\displaystyle -\dfrac1{(300-t)^{13}} A = -\dfrac{11}{300^{13}} - \frac95 \times \dfrac1{12} \left(\frac1{(300-t)^{12}} - \frac1{300^{12}}\right) [/tex]
[tex]\displaystyle -\dfrac1{(300-t)^{13}} A = \dfrac{34}{300^{13}} - \frac3{20}\frac1{(300-t)^{12}}[/tex]
[tex]\displaystyle A = \frac3{20} (300-t) - \dfrac{34}{300^{13}}(300-t)^{13}[/tex]
[tex]\displaystyle A = 45 \left(1 - \frac t{300}\right) - 34 \left(1 - \frac t{300}\right)^{13}[/tex]
After 1 hour = 60 minutes, the tank will contain
[tex]A(60) = 45 \left(1 - \dfrac {60}{300}\right) - 34 \left(1 - \dfrac {60}{300}\right)^{13} = 45\left(\dfrac45\right) - 34 \left(\dfrac45\right)^{13} \approx 34.131[/tex]
pounds of salt.