Respuesta :

Isolate y on both equations then equate

  • x²-3x+2y=-4
  • 2y=-x²+3x-4
  • y=-x²/2+3/2x-2

Now you can equate it with second one to get x

Answer:

Substitute y = 3x + 2 into x² - 3x + 2y = -4

Step-by-step explanation:

Given system of equations:

[tex]\begin{cases}x^2-3x+2y=-4\\y=3x+2\end{cases}[/tex]

Since y is already isolated in the second equation, the best first step would be to substitute the second equation into the first equation, then solve for x.

Substitute equation 2 into equation 1:

[tex]\implies x^2-3x+2(3x+2)=-4[/tex]

Expand the brackets and simplify so that the equation equals zero:

[tex]\implies x^2-3x+6x+4=-4[/tex]

[tex]\implies x^2+3x+4+4=0[/tex]

[tex]\implies x^2+3x+8=0[/tex]

Now use the Quadratic Formula to solve for x.

Quadratic Formula

[tex]x=\dfrac{-b \pm \sqrt{b^2-4ac} }{2a}\quad\textsf{when }\:ax^2+bx+c=0[/tex]

Define the variables:

[tex]\implies a=1, \quad b=3, \quad c=8[/tex]

Substitute the values into the formula and solve for x:

[tex]\implies x=\dfrac{-3 \pm \sqrt{3^2-4(1)(8)}}{2(1)}[/tex]

[tex]\implies x=\dfrac{-3 \pm \sqrt{-23}}{2}[/tex]

[tex]\implies x=\dfrac{-3 \pm \sqrt{-1 \cdot 23}}{2}[/tex]

[tex]\implies x=\dfrac{-3 \pm \sqrt{-1}\sqrt{23}}{2}[/tex]

Remember that [tex]i^2=-1[/tex]

[tex]\implies x=\dfrac{-3 \pm i\sqrt{23}}{2}[/tex]

Therefore, the solutions to the system of equations are:

[tex]x=\dfrac{-3 + i\sqrt{23}}{2}, \quad \dfrac{-3 - i\sqrt{23}}{2}[/tex]

Learn more about systems of equations here:

https://brainly.com/question/27520807

ACCESS MORE