When an spherical balloon volume is increasing at the rate of [tex]3ft^3/min[/tex] then the diameter of the balloon is increasing [tex]\frac{3}{2\pi }ft /min[/tex]
How can we find the rate of change of balloon's diameter ?
The volume of a spherical balloon is [tex]v=\frac{4}{3} \pi r^3[/tex]
In form of diameter we can write as
[tex]v=\frac{4}{3} \pi (\frac{D}{2} )^3\\=\frac{1}{6} \pi D^3[/tex]
Now we will differentiate both sides wrt to [tex]t[/tex] we get
[tex]\frac{dv}{dt} =\frac{1}{6} \pi 3D^2 \frac{dD}{dt} \\\frac{dD}{dt} =\frac{2}{\pi D^2} \frac{dv}{dt} \\\\when r=1\\D=2ft[/tex]
Given in the question [tex]\frac{dv}{dt} =3ft^3/min[/tex]
thus when we substitute the values we get
[tex]\frac{dD}{dt} =\frac{2}{\pi *2^2} (3)\\\frac{dD}{dt}=\frac{3}{2\pi } ft/min[/tex]
Learn more about the differentiation here:
https://brainly.com/question/28046488
#SPJ4