Using Pythagoras theorem, the top of the ladder moving down when the foot of the ladder is 3 feet from the wall is of -0.518 feet/sec.
Let distance from the wall to the foot of the ladder is 'x' feet and the height of the top of the ladder is 'y' feet.
Pythagoras theorem, [tex]x^{2} + y^{2} = (12)^{2}[/tex] --->(1)
Given,[tex]\frac{dx}{dt}= 2feet/second[/tex] at x=3
Put x=3 in Pythagoras theorem equation (1)
[tex](3)^{2} + y^{2} = 144[/tex]
[tex]y^{2} = 144 - 9[/tex]
[tex]y^{2}[/tex] = 135
y = 11.61
Derive equation (1) w.r.t to 't'
[tex]2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 0[/tex] ---->(2)
substitute the value of 'x', 'dx/dt' and 'y' in equation (2), we get the fast of the top of the ladder moving down when the foot of the ladder is 3 feet from the wall
[tex]2(3)(2) + 2 (11.61)\frac{dy}{dt} = 0[/tex]
12 + 23.22 [tex]\frac{dy}{dt}[/tex] = 0
[tex]\frac{dy}{dt}= \frac{-12}{23.22}[/tex]
[tex]\frac{dy}{dt} = -0.518[/tex]
Hence, using Pythagoras theorem the top of the ladder moving down when the foot of the ladder is 3 feet from the wall is of -0.518 feet/sec.
Learn more about Pythagoras theorem here
https://brainly.com/question/21511305
#SPJ4