The decomposition of the partial fraction is [tex]\frac{4ax-a^2}{(x+ 2a)(x-a)} = \frac{A}{x + 2a} + \frac{B}{x - a}[/tex]
The expression is given as:
[tex]\frac{4ax-a^2}{x^2+ax-2a^2}[/tex]
Expand the denominator
[tex]\frac{4ax-a^2}{x^2- ax+2ax-2a^2}[/tex]
Factorize
[tex]\frac{4ax-a^2}{x(x- a)+2a(x-a)}[/tex]
Factor out x - a
[tex]\frac{4ax-a^2}{(x+ 2a)(x-a)}[/tex]
The denominator of the partial fraction is a product of two linear factors.
So, the decomposition can be represented as:
[tex]\frac{4ax-a^2}{(x+ 2a)(x-a)} = \frac{A}{x + 2a} + \frac{B}{x - a}[/tex]
Read more about partial fractions at:
https://brainly.com/question/18958301
#SPJ1