Respuesta :

The decomposition of the partial fraction is [tex]\frac{4ax-a^2}{(x+ 2a)(x-a)} = \frac{A}{x + 2a} + \frac{B}{x - a}[/tex]

How to split the fraction?

The expression is given as:

[tex]\frac{4ax-a^2}{x^2+ax-2a^2}[/tex]

Expand the denominator

[tex]\frac{4ax-a^2}{x^2- ax+2ax-2a^2}[/tex]

Factorize

[tex]\frac{4ax-a^2}{x(x- a)+2a(x-a)}[/tex]

Factor out x - a

[tex]\frac{4ax-a^2}{(x+ 2a)(x-a)}[/tex]

The denominator of the partial fraction is a product of two linear factors.

So, the decomposition can be represented as:

[tex]\frac{4ax-a^2}{(x+ 2a)(x-a)} = \frac{A}{x + 2a} + \frac{B}{x - a}[/tex]

Read more about partial fractions at:

https://brainly.com/question/18958301

#SPJ1

ACCESS MORE