Can someone help me on this pls? It’s urgent, so ASAP (it’s geometry)
Write formal proofs using LL Theorem.

Question 6
1) [tex]\overline{AB} \cong \overline{BD}[/tex], [tex]\overline{CD} \perp \overline{BD}[/tex], O is the midpoint of [tex]\overline{BD}[/tex], [tex]\overline{AB} \cong \overline{CD}[/tex] (given)
2) [tex]\angle ABO, \angle ODC[/tex] are right angles (perpendicular lines form right angles)
3) [tex]\triangle ABO, \triangle CDO[/tex] are right triangles (a triangle with a right angle is a right triangle)
4) [tex]\overline{BO} \cong \overline{OD}[/tex] (a midpoint splits a segment into two congruent parts)
5) [tex]\triangle ABO \cong \triangle CDO[/tex] (LL)
Question 7
1) [tex]\angle ADC, \angle BDC[/tex] are right angles), [tex]\overline{AD} \cong \overline{BD}[/tex]
2) [tex]\overline{CD} \cong \overline{CD}[/tex] (reflexive property)
3) [tex]\triangle CDA, \triangle CDB[/tex] are right triangles (a triangle with a right angle is a right triangle)
4) [tex]\triangle ADC \cong \triangle BDC[/tex] (LL)
5) [tex]\overline{AC} \cong \overline{BC}[/tex] (CPCTC)
Question 8
1) [tex]\overline{CD} \perp \overline{AB}[/tex], point D bisects [tex]\overline{AB}[/tex] (given)
2) [tex]\angle CDA, \angle CDB[/tex] are right angles (perpendicular lines form right angles)
3) [tex]\triangle CDA, \triangle CDB[/tex] are right triangles (a triangle with a right angle is a right triangle)
4) [tex]\overline{AD} \cong \overline{DB}[/tex] (definition of a bisector)
5) [tex]\overline{CD} \cong \overline{CD}[/tex] (reflexive property)
6) [tex]\triangle ADC \cong \triangle BDC[/tex] (LL)
7) [tex]\angle ACD \cong \angle BCD[/tex] (CPCTC)