Respuesta :

cos θ = [tex]\frac{-4\sqrt{65} }{65}[/tex], sin θ = [tex]\frac{-7\sqrt{65} }{65}[/tex], cot  θ  = 4/7, sec  θ = [tex]\frac{-\sqrt{65} }{4}[/tex], cosec  θ  = [tex]\frac{-\sqrt{65} }{7}[/tex]

What are trigonometric ratios?

Trigonometric Ratios are values of all the trigonometric functions based on the value of the ratio of sides in a right-angled triangle.

Sin θ: Opposite Side to θ/Hypotenuse

Tan θ: Opposite Side/Adjacent Side & Sin θ/Cos

Cos θ: Adjacent Side to θ/Hypotenuse

Sec θ: Hypotenuse/Adjacent Side & 1/cos θ

Analysis:

tan θ = opposite/adjacent = 7/4

opposite = 7, adjacent = 4.

we now look for the hypotenuse of the right angled triangle

hypotenuse = [tex]\sqrt{7^{2} + 4^{2} }[/tex] = [tex]\sqrt{49+16}[/tex] = [tex]\sqrt{65}[/tex]

sin θ = opposite/ hyp = [tex]\frac{7}{\sqrt{65} }[/tex]

Rationalize, [tex]\frac{7}{\sqrt{65} }[/tex] x [tex]\frac{\sqrt{65} }{\sqrt{65} }[/tex] = [tex]\frac{7\sqrt{65} }{65}[/tex]

But θ is in the third quadrant(180 - 270) and in the third quadrant only tan and cot are positive others are negative.

Therefore, sin θ = - [tex]\frac{7\sqrt{65} }{65}[/tex]

cos   θ  = adj/hyp = [tex]\frac{4}{\sqrt{65} }[/tex]

By rationalizing and knowing that cos  θ  is negative, cos θ  = -[tex]\frac{-4\sqrt{65} }{65}[/tex]

cot θ  = 1/tan θ  = 1/7/4 = 4/7

sec θ  = 1/cos θ  = 1/[tex]\frac{4}{\sqrt{65} }[/tex] = -[tex]\frac{-\sqrt{65} }{4}[/tex]

cosec θ  = 1/sin θ  = 1/[tex]\frac{\sqrt{65} }{7}[/tex] = [tex]\frac{-\sqrt{65} }{7}[/tex]

Learn more about trigonometric ratios: brainly.com/question/24349828

#SPJ1

ACCESS MORE