Trigonometry Maths Question
80 points up for grabs!
Will mark brainliest to whoever answers

Answer:
x = 35.537677791974°
y = 63.434948822922°
Step-by-step explanation:
let x be the measure of the angle of elevation of the sun.
tan(x) = 10/14
Then
x = tan⁻¹ (10÷14) = 35.537677791974°
………………………………………………
let y be the measure of the angle of elevation of the sun
where the shadow decreases to 5m.
tan(y) = 10/5 = 2
Then
y = tan⁻¹ (2) = 63.434948822922°
Answer:
a) 35.54°
b) 63.43°
Given following:
Determining, the shadow is adjacent side and length of the pole is the opposite side. Hence, use the tan rule. Let the angle be x.
(a)
[tex]\sf tan(x) = \dfrac{opposite}{adjacent}[/tex]
[tex]\sf tan(x) = \dfrac{10}{14}[/tex]
[tex]\sf x = tan^{-1}(\dfrac{10}{14} )[/tex]
[tex]\sf x = 35.54^{\circ \:} \quad (rounded \ to \ nearest \ hundredth )[/tex]
(b) If the shadow decreases to 5 meter.
[tex]\sf tan(x) = \dfrac{opposite}{adjacent}[/tex]
[tex]\sf tan(x) = \dfrac{10}{5}[/tex]
[tex]\sf x = tan^{-1} (\dfrac{10}{5})[/tex]
[tex]\sf x = 63.43 ^\circ \quad (rounded \ to \ nearest \ hundredth)[/tex]