Respuesta :

Answer:

x = 35.537677791974°

y = 63.434948822922°

Step-by-step explanation:

let x be the measure of the angle of elevation of the sun.

tan(x) = 10/14

Then

x = tan⁻¹ (10÷14) = 35.537677791974°

………………………………………………

let y be the measure of the angle of elevation of the sun

where the shadow decreases to 5m.

tan(y) = 10/5 = 2

Then

y = tan⁻¹ (2) = 63.434948822922°

Ver imagen profarouk

Answer:

a) 35.54°

b) 63.43°

Given following:

  • length of pole: 10 meter
  • its shadow: 14 meter

Determining, the shadow is adjacent side and length of the pole is the opposite side. Hence, use the tan rule. Let the angle be x.

(a)

[tex]\sf tan(x) = \dfrac{opposite}{adjacent}[/tex]

[tex]\sf tan(x) = \dfrac{10}{14}[/tex]

[tex]\sf x = tan^{-1}(\dfrac{10}{14} )[/tex]

[tex]\sf x = 35.54^{\circ \:} \quad (rounded \ to \ nearest \ hundredth )[/tex]

(b) If the shadow decreases to 5 meter.

[tex]\sf tan(x) = \dfrac{opposite}{adjacent}[/tex]

[tex]\sf tan(x) = \dfrac{10}{5}[/tex]

[tex]\sf x = tan^{-1} (\dfrac{10}{5})[/tex]

[tex]\sf x = 63.43 ^\circ \quad (rounded \ to \ nearest \ hundredth)[/tex]

Ver imagen fieryanswererft
ACCESS MORE