How to solve exercise 1

Answer:
[tex]period \: of \: sin(2x) = \pi \\ period \: of \: cos \frac{x}{4} = 8\pi \\ period \: of \: tan \frac{x}{3} = 3\pi[/tex]
Step-by-step explanation:
Hello !
[tex]periodicity \: of \: a.sin(bx + c) + d = \\ \frac{periodicity \: of \: sin(x)}{ |b| } \\ periodicit \: of \: sin \: (x) \: is \: 2\pi = \\ \frac{2\pi}{2} \: simplify = \pi \\ periodicity \: of \: a.cos(bx + c) = \\ \frac{periodicity \: of \: cos(x)}{ |b| } \\ periodicit \: of \: cos \: (x)is \: 2\pi = \\ \frac{2\pi}{1\frac{1}{4} } \: simplify \: = 8\pi \\ periodicity \: of \: a.tan(bx + c) = \\ \frac{periodicity \: of \: tan(x)}{ |b| } \\ periodicity \: of \: tan(x) \: is \: \pi \\ \frac{\pi}{} \frac{1}{3} [/tex]